
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex. Journal of Neuroscience, 2005, 25, 247-251.	1.7	1,156
2	Transcriptional landscape of the prenatal human brain. Nature, 2014, 508, 199-206.	13.7	1,147
3	Tbr1 Regulates Differentiation of the Preplate and Layer 6. Neuron, 2001, 29, 353-366.	3.8	829
4	Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nature Reviews Neuroscience, 2014, 15, 217-232.	4.9	419
5	Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. Neuroscience Research, 2006, 55, 223-233.	1.0	398
6	Intermediate Neuronal Progenitors (Basal Progenitors) Produce Pyramidal–Projection Neurons for All Layers of Cerebral Cortex. Cerebral Cortex, 2009, 19, 2439-2450.	1.6	369
7	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	13.7	341
8	Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13129-13134.	3.3	297
9	PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain, 2015, 138, 1613-1628.	3.7	286
10	Intermediate Progenitors in Adult Hippocampal Neurogenesis: Tbr2 Expression and Coordinate Regulation of Neuronal Output. Journal of Neuroscience, 2008, 28, 3707-3717.	1.7	277
11	Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 2016, 22, 1256-1259.	15.2	241
12	Association of <i>MTOR</i> Mutations With Developmental Brain Disorders, Including Megalencephaly, Focal Cortical Dysplasia, and Pigmentary Mosaicism. JAMA Neurology, 2016, 73, 836.	4.5	234
13	Beyond Laminar Fate: Toward a Molecular Classification of Cortical Projection/Pyramidal Neurons. Developmental Neuroscience, 2003, 25, 139-151.	1.0	225
14	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	0.9	224
15	Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Developmental Biology, 2007, 302, 50-65.	0.9	211
16	Cajal–Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Developmental Brain Research, 2003, 141, 39-53.	2.1	183
17	Neurogenesis Continues in the Third Trimester of Pregnancy and Is Suppressed by Premature Birth. Journal of Neuroscience, 2013, 33, 411-423.	1.7	173
18	Glial localization of antiquitin: Implications for pyridoxineâ€dependent epilepsy. Annals of Neurology, 2014, 75, 22-32.	2.8	165

2

#	Article	IF	CITATIONS
19	Homozygous Mutations in CSF1R Cause a Pediatric-Onset Leukoencephalopathy and Can Result in Congenital Absence of Microglia. American Journal of Human Genetics, 2019, 104, 936-947.	2.6	157
20	Tbr2 Is Essential for Hippocampal Lineage Progression from Neural Stem Cells to Intermediate Progenitors and Neurons. Journal of Neuroscience, 2012, 32, 6275-6287.	1.7	130
21	Glial injury in neurotoxicity after pediatric CD19â€directed chimeric antigen receptor T cell therapy. Annals of Neurology, 2019, 86, 42-54.	2.8	124
22	Neurovascular Congruence during Cerebral Cortical Development. Cerebral Cortex, 2009, 19, i32-i41.	1.6	120
23	De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nature Genetics, 2014, 46, 510-515.	9.4	118
24	Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 2018, 24, 368-374.	15.2	117
25	From Radial Glia to Pyramidal-Projection Neuron: Transcription Factor Cascades in Cerebral Cortex Development. Molecular Neurobiology, 2006, 33, 033-050.	1.9	116
26	Layer-Specific Markers as Probes for Neuron Type Identity in Human Neocortex and Malformations of Cortical Development. Journal of Neuropathology and Experimental Neurology, 2007, 66, 101-109.	0.9	116
27	The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathologica, 2005, 110, 208-221.	3.9	106
28	Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain, 2017, 140, 2610-2622.	3.7	102
29	Dynamic Interactions between Intermediate Neurogenic Progenitors and Radial Glia in Embryonic Mouse Neocortex: Potential Role in Dll1-Notch Signaling. Journal of Neuroscience, 2013, 33, 9122-9139.	1.7	97
30	Intermediate Progenitor Cohorts Differentially Generate Cortical Layers and Require Tbr2 for Timely Acquisition of Neuronal Subtype Identity. Cell Reports, 2016, 16, 92-105.	2.9	97
31	Fibroblast growth factor signaling in development of the cerebral cortex. Development Growth and Differentiation, 2009, 51, 299-323.	0.6	94
32	The protomap is propagated to cortical plate neurons through an <i>Eomes</i> -dependent intermediate map. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4081-4086.	3.3	89
33	Intermediate progenitors and Tbr2 in cortical development. Journal of Anatomy, 2019, 235, 616-625.	0.9	89
34	Cellâ€ŧypeâ€specific consequences of reelin deficiency in the mouse neocortex, hippocampus, and amygdala. Journal of Comparative Neurology, 2011, 519, 2061-2089.	0.9	82
35	Dystroglycan on Radial Glia End Feet Is Required for Pial Basement Membrane Integrity and Columnar Organization of the Developing Cerebral Cortex. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1047-1063.	0.9	78
36	Malformations of Cerebral Cortex Development: Molecules and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 293-318.	9.6	71

#	Article	IF	CITATIONS
37	<i>Tbr2</i> Expression in Cajal-Retzius Cells and Intermediate Neuronal Progenitors Is Required for Morphogenesis of the Dentate Gyrus. Journal of Neuroscience, 2013, 33, 4165-4180.	1.7	65
38	Evolution of the mammalian dentate gyrus. Journal of Comparative Neurology, 2016, 524, 578-594.	0.9	63
39	Long-lasting analgesia via targeted in situ repression of Na _V 1.7 in mice. Science Translational Medicine, 2021, 13, .	5.8	56
40	Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development (Cambridge), 2018, 145, .	1.2	52
41	Brain overgrowth in disorders of RTK–PI3K–AKT signaling: A mosaic of malformations. Seminars in Perinatology, 2015, 39, 36-43.	1.1	51
42	Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. Journal of Neuroscience, 2019, 39, 1320-1331.	1.7	50
43	Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nature Medicine, 2021, 27, 1701-1711.	15.2	49
44	The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Frontiers in Neuroscience, 2018, 12, 571.	1.4	46
45	Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nature Communications, 2020, 11, 550.	5.8	45
46	Aberrant neuronal-glial differentiation in Taylor-type focal cortical dysplasia (type IIA/B). Acta Neuropathologica, 2005, 109, 519-533.	3.9	44
47	Neurog2 Simultaneously Activates and Represses Alternative Gene Expression Programs in the Developing Neocortex. Cerebral Cortex, 2013, 23, 1884-1900.	1.6	43
48	Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. ELife, 2020, 9, .	2.8	37
49	<i>ATP1A2-</i> and <i>ATP1A3-</i> associated early profound epileptic encephalopathy and polymicrogyria. Brain, 2021, 144, 1435-1450.	3.7	35
50	An unusual cause of trigeminal-distribution pain and tumour. Lancet Neurology, The, 2003, 2, 567-571.	4.9	34
51	Generation and characterization of a tamoxifenâ€inducible Eomes ^{CreER} mouse line. Genesis, 2013, 51, 725-733.	0.8	30
52	Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization: Evidence for a reelin-related pathogenic pathway induced by interleukin-6. Brain, Behavior, and Immunity, 2019, 78, 105-115.	2.0	29
53	De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. European Journal of Human Genetics, 2020, 28, 770-782.	1.4	27
54	Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice. Reproductive Sciences, 2016, 23, 771-778.	1.1	26

#	Article	IF	CITATIONS
55	Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathologica Communications, 2013, 1, 45.	2.4	22
56	C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus. Journal of Neuroscience, 2017, 37, 960-971.	1.7	21
57	Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III. Acta Neuropathologica, 2011, 121, 545-554.	3.9	18
58	Biallelic loss of function variants in ATP1A2 cause hydrops fetalis, microcephaly, arthrogryposis and extensive cortical malformations. European Journal of Medical Genetics, 2020, 63, 103624.	0.7	18
59	GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cerebral Cortex, 2019, 29, 3482-3495.	1.6	14
60	AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Frontiers in Molecular Neuroscience, 2022, 15, 858582.	1.4	14
61	Progress on pontocerebellar hypoplasia. Acta Neuropathologica, 2007, 114, 401-402.	3.9	13
62	The spectrum of brain malformations and disruptions in twins. American Journal of Medical Genetics, Part A, 2021, 185, 2690-2718.	0.7	13
63	AUTS2 Regulates RNA Metabolism and Dentate Gyrus Development in Mice. Cerebral Cortex, 2021, 31, 4808-4824.	1.6	12
64	Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Frontiers in Molecular Neuroscience, 2021, 14, 686034.	1.4	12
65	Developmental exposure to diesel exhaust upregulates transcription factor expression, decreases hippocampal neurogenesis, and alters cortical lamina organization: relevance to neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2020, 12, 41.	1.5	7
66	Reelin Mediates Hippocampal Cajal-Retzius Cell Positioning and Infrapyramidal Blade Morphogenesis. Journal of Developmental Biology, 2020, 8, 20.	0.9	5
67	What Makes the Human Brain Human?. Neuron, 2020, 105, 761-763.	3.8	3
68	C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus. Journal of Neuroscience, 2017, 37, 960-971.	1.7	2
69	What Are the Double Lines of the Fetal Cavum Septi Pellucidi on Ultrasound?. Journal of Ultrasound in Medicine, 2021, , .	0.8	2
70	Cell-type-specific consequences of reelin deficiency in the mouse neocortex, hippocampus, and amygdala. Journal of Comparative Neurology, 2011, 519, Spc1-Spc1.	0.9	0
71	Reply to Hsueh YP et al European Journal of Human Genetics, 2020, 28, 999-999.	1.4	0
72	Decreased neurogenesis in the Dentate Gyrus following sensory nonâ€normative overstimulation FASEB Journal, 2013, 27, 1124.6.	0.2	0

#	Article	IF	CITATIONS
73	Singleâ€Cell Calcium Imaging of RFP Labeled Interneurons in the Neocortex of Tbr1â€Deficient Neonatal mice. FASEB Journal, 2015, 29, 1021.6.	0.2	ο