
Danuta Szczesna-Cordary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myosin essential light chain in health and disease. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1643-H1654.	3.2	116
2	Cardiomyopathy-linked myosin regulatory light chain mutations disrupt myosin strain-dependent biochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17403-17408.	7.1	76
3	Regulatory Light Chains of Striated Muscle Myosin. Structure, Function and Malfunction. Current Drug Targets Cardiovascular & Haematological Disorders, 2003, 3, 187-197.	2.0	74
4	Familial Hypertrophic Cardiomyopathy-linked Alterations in Ca2+ Binding of Human Cardiac Myosin Regulatory Light Chain Affect Cardiac Muscle Contraction. Journal of Biological Chemistry, 2004, 279, 3535-3542.	3.4	65
5	The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice. Journal of Cell Science, 2005, 118, 3675-3683.	2.0	63
6	Malignant familial hypertrophic cardiomyopathy D166V mutation in the ventricular myosin regulatory light chain causes profound effects in skinned and intact papillary muscle fibers from transgenic mice. FASEB Journal, 2009, 23, 855-865.	0.5	63
7	Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4138-46.	7.1	63
8	Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice. Cardiovascular Research, 2009, 82, 84-92.	3.8	62
9	Prolonged Ca2+ and Force Transients in Myosin RLC Transgenic Mouse Fibers Expressing Malignant and Benign FHC Mutations. Journal of Molecular Biology, 2006, 361, 286-299.	4.2	58
10	The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R265-R274.	1.8	56
11	Regulatory light chain mutations associated with cardiomyopathy affect myosin mechanics and kinetics. Journal of Molecular and Cellular Cardiology, 2009, 46, 108-115.	1.9	53
12	The Role of the N-Terminus of the Myosin Essential Light Chain in Cardiac Muscle Contraction. Journal of Molecular Biology, 2009, 387, 706-725.	4.2	52
13	Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB Journal, 2011, 25, 4394-4405.	0.5	44
14	The effect of myosin RLC phosphorylation in normal and cardiomyopathic mouse hearts. Journal of Cellular and Molecular Medicine, 2012, 16, 911-919.	3.6	44
15	Myosin regulatory light chain E22K mutation results in decreased cardiac intracellular calcium and force transients. FASEB Journal, 2007, 21, 3974-3985.	0.5	42
16	Novel familial dilated cardiomyopathy mutation in <i><scp>MYL</scp>2</i> affects the structure and function of myosin regulatory light chain. FEBS Journal, 2015, 282, 2379-2393.	4.7	42
17	Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle development. FASEB Journal, 2007, 21, 2205-2214.	0.5	38
18	lschemia/reperfusionâ€induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase 2. FEBS Journal, 2012, 279, 2444-2454.	4.7	36

#	Article	IF	CITATIONS
19	Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. Journal of Muscle Research and Cell Motility, 2020, 41, 313-327.	2.0	36
20	Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load. Archives of Biochemistry and Biophysics, 2015, 580, 14-21.	3.0	33
21	Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H575-H589.	3.2	31
22	Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations. Journal of Muscle Research and Cell Motility, 2015, 36, 433-445.	2.0	31
23	Sarcomeric perturbations of myosin motors lead to dilated cardiomyopathy in genetically modified <i>MYL2</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2338-E2347.	7.1	28
24	Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice. Biochemical Journal, 2012, 442, 95-103.	3.7	27
25	Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. Circulation, 2019, 140, 765-778.	1.6	26
26	Phosphomimeticâ€mediated <i>inÂvitro</i> rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS Journal, 2019, 286, 151-168.	4.7	25
27	Mavacamten decreases maximal force and Ca ²⁺ sensitivity in the N47K-myosin regulatory light chain mouse model of hypertrophic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H881-H890.	3.2	25
28	Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice. Journal of Molecular and Cellular Cardiology, 2014, 74, 318-329.	1.9	24
29	In vitro rescue study of a malignant familial hypertrophic cardiomyopathy phenotype by pseudo-phosphorylation of myosin regulatory light chain. Archives of Biochemistry and Biophysics, 2014, 552-553, 29-39.	3.0	24
30	Characterizations of myosin essential light chain'sÂN-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations. Journal of Muscle Research and Cell Motility, 2013, 34, 93-105.	2.0	23
31	Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovascular Research, 2017, 113, 1124-1136.	3.8	23
32	Molecular basis of force-pCa relation in <i>MYL2</i> cardiomyopathy mice: Role of the super-relaxed state of myosin. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
33	Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Archiv European Journal of Physiology, 2019, 471, 683-699.	2.8	20
34	N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size. Biochemistry, 2016, 55, 186-198.	2.5	19
35	Diversity and similarity of motor function and cross-bridge kinetics in papillary muscles of transgenic mice carrying myosin regulatory light chain mutations D166V and R58Q. Journal of Molecular and Cellular Cardiology, 2013, 62, 153-163.	1.9	18
36	Deletion of 1–43 amino acids in cardiac myosin essential light chain blunts length dependency of Ca ²⁺ sensitivity and cross-bridge detachment kinetics. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H253-H259.	3.2	17

#	Article	IF	CITATIONS
37	Single cardiac ventricular myosins are autonomous motors. Open Biology, 2018, 8, 170240.	3.6	16
38	Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. Journal of Molecular Medicine, 2019, 97, 1033-1047.	3.9	15
39	Genomic Amplification and Functional Dependency of the Gamma Actin Gene ACTG1 in Uterine Cancer. International Journal of Molecular Sciences, 2020, 21, 8690.	4.1	15
40	Ablation of the N terminus of cardiac essential light chain promotes the superâ€relaxed state of myosin and counteracts hypercontractility in hypertrophic cardiomyopathy mutant mice. FEBS Journal, 2020, 287, 3989-4004.	4.7	15
41	Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophysical Reviews, 2017, 9, 57-64.	3.2	14
42	Cardiomyopathic mutations in essential light chain reveal mechanisms regulating the super relaxed state of myosin. Journal of General Physiology, 2021, 153, .	1.9	14
43	Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH ₂ terminus of the RLC on β-myosin cross-bridge mechanics. Journal of Applied Physiology, 2014, 117, 1471-1477.	2.5	13
44	Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations. Frontiers in Physiology, 2014, 5, 353.	2.8	13
45	Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain. Archives of Biochemistry and Biophysics, 2016, 601, 121-132.	3.0	13
46	Slowâ€ŧwitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain. FASEB Journal, 2019, 33, 3152-3166.	0.5	11
47	Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants. Frontiers in Physiology, 2016, 7, 240.	2.8	9
48	Myosin light chain phosphorylation, novel targets to repair a broken heart?. Cardiovascular Research, 2016, 111, 5-7.	3.8	9
49	Proteomic analysis of physiological versus pathological cardiac remodeling in animal models expressing mutations in myosin essential light chains. Journal of Muscle Research and Cell Motility, 2015, 36, 447-461.	2.0	8
50	Impact of regulatory light chain mutation K104E on the ATPase and motor properties of cardiac myosin. Journal of General Physiology, 2021, 153, .	1.9	8
51	Functional Consequences of Mutations in the Myosin Regulatory Light Chain Associated with Hypertrophic Cardiomyopathy. , 2012, , .		6
52	Cardiac contractility, motor function, and crossâ€bridge kinetics in N47K―RLC mutant mice. FEBS Journal, 2017, 284, 1897-1913.	4.7	5
53	Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calciumâ€activated tension and stiffness and reduces myofilament Ca ²⁺ sensitivity. FEBS Journal, 2021, 288, 4596-4613.	4.7	5
54	Cardiomyopathies: Classification, Clinical Characterization, and Functional Phenotypes. Biochemistry Research International, 2012, 2012, 1-2.	3.3	4

#	Article	IF	CITATIONS
55	The R21C Mutation in Cardiac Troponin I Imposes Differences in Contractile Force Generation between the Left and Right Ventricles of Knock-In Mice. BioMed Research International, 2015, 2015, 1-9.	1.9	4
56	Molecular Mechanism of Muscle Contraction: New Perspectives and Ideas. BioMed Research International, 2015, 2015, 1-2.	1.9	3
57	A Novel Method of Determining the Functional Effects of a Minor Genetic Modification of a Protein. Frontiers in Cardiovascular Medicine, 2015, 2, 35.	2.4	1
58	HGAL Directly Interacts with Both Myosin and Actin and Increases the Binding of Myosin to Actin. Blood, 2010, 116, 3097-3097.	1.4	0