Iñigo López-Arbeloa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434514/publications.pdf

Version: 2024-02-01

36271 74108 6,960 158 51 75 citations h-index g-index papers 162 162 162 6106 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European Journal of Organic Chemistry, 2021, 2021, 253-265.	1.2	7
2	Shedding light on the mitochondrial matrix through a functional membrane transporter. Chemical Science, 2020, 11, 1052-1065.	3.7	7
3	Ready Access to Molecular Rotors Based on Boron Dipyrromethene Dyes-Coumarin Dyads Featuring Broadband Absorption. Molecules, 2020, 25, 781.	1.7	3
4	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	1.3	92
5	Methylthio BODIPY as a standard triplet photosensitizer for singlet oxygen production: a photophysical study. Physical Chemistry Chemical Physics, 2019, 21, 20403-20414.	1.3	21
6	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	1.7	31
7	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	1.6	6
8	Dye Encapsulation Into One-Dimensional Zeolitic Materials for Optical Applications., 2019,, 229-248.		1
9	Distinctive Diffusion Regimes of Organic Molecules in Clays: (De)Coupled Motion with Water. Journal of Physical Chemistry C, 2019, 123, 511-516.	1.5	2
10	Singlet Fission Mediated Photophysics of BODIPY Dimers. Journal of Physical Chemistry Letters, 2018, 9, 641-646.	2.1	42
11	Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry - A European Journal, 2018, 24, 3802-3815.	1.7	11
12	Cs-137 immobilization in C-S-H gel nanopores. Physical Chemistry Chemical Physics, 2018, 20, 9289-9297.	1.3	18
13	One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates. ACS Photonics, 2018, 5, 151-157.	3.2	13
14	Water Adsorption on the \hat{I}^2 -Dicalcium Silicate Surface from DFT Simulations. Minerals (Basel,) Tj ETQq 0 0 0 rgBT	/Oyerlock	≀ 10 ∏f 50 222
15	Enhancement of NIR emission by a tight confinement of a hemicyanine dye within zeolitic MgAPO-5 nanochannels. Photochemical and Photobiological Sciences, 2018, 17, 917-922.	1.6	3
16	Benchmark of ReaxFF force field for subcritical and supercritical water. Journal of Chemical Physics, 2018, 148, 234503.	1.2	34
17	Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers, 2018, 10, 188.	2.0	6
18	Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes. ACS Omega, 2018, 3, 7783-7797.	1.6	9

#	Article	IF	CITATIONS
19	Fully Functionalizable β,β′-BODIPY Dimer: Synthesis, Structure, and Photophysical Signatures. Journal of Organic Chemistry, 2018, 83, 10186-10196.	1.7	17
20	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	2.0	12
21	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	1.7	87
22	Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 13746-13755.	1.3	13
23	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	1.7	30
24	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	1.7	38
25	One-Pot Synthesis of Rotationally Restricted, Conjugatable, BODIPY Derivatives from Phthalides. Journal of Organic Chemistry, 2017, 82, 1240-1247.	1.7	24
26	Solventâ€Sensitive Emitting Ureaâ€Bridged bisâ€BODIPYs: Ready Access by a Oneâ€Pot Tandem Staudinger/Azaâ€Wittig Ureation. Chemistry - A European Journal, 2017, 23, 17511-17520.	1.7	7
27	Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads. Dalton Transactions, 2017, 46, 11830-11839.	1.6	22
28	A versatile synthetic approach to design tailor-made push-pull chromophores with intriguing and tunable photophysical signatures. Dyes and Pigments, 2017, 147, 246-259.	2.0	7
29	Photoactive Nanomaterials Inspired by Nature: LTL Zeolite Doped with Laser Dyes as Artificial Light Harvesting Systems. Materials, 2017, 10, 495.	1.3	17
30	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	1.7	58
31	Strategies for modulating the luminescence properties of pyronin Y dye–clay films: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 8730-8738.	1.3	18
32	Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region. RSC Advances, 2016, 6, 41991-41998.	1.7	80
33	Synthesis, Properties, and Functionalization of Nonsymmetric 8â€MethylthioBODIPYs. European Journal of Organic Chemistry, 2016, 2016, 5009-5023.	1.2	11
34	Formation of a Nonlinear Optical Host–Guest Hybrid Material by Tight Confinement of LDSâ€722 into Aluminophosphate 1D Nanochannels. Chemistry - A European Journal, 2016, 22, 15700-15711.	1.7	22
35	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	1.6	23
36	Unprecedented Jâ€Aggregated Dyes in Pure Organic Solvents. Advanced Functional Materials, 2016, 26, 2756-2769.	7.8	52

#	Article	IF	CITATIONS
37	Nearâ€IR BODIPY Dyes à la Carteâ€"Programmed Orthogonal Functionalization of Rationally Designed Building Blocks. Chemistry - A European Journal, 2016, 22, 1048-1061.	1.7	45
38	FormylBODIPYs: Privileged Building Blocks for Multicomponent Reactions. The Case of the Passerini Reaction. Journal of Organic Chemistry, 2016, 81, 2888-2898.	1.7	28
39	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	2.2	23
40	Emission properties of dye-doped cationic nanoparticles: size, surfactant and monomeric composition effects. RSC Advances, 2015, 5, 4454-4462.	1.7	3
41	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	1.3	56
42	Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations. ACS Applied Materials & Discourage (2015, 7, 14726-14733.	4.0	76
43	Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. Journal of Organic Chemistry, 2015, 80, 5771-5782.	1.7	36
44	Enhanced Charge-Transfer Emission in Polyimides by Cyano-Groups Doping. Journal of Physical Chemistry B, 2015, 119, 5685-5692.	1.2	7
45	Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. International Reviews in Physical Chemistry, 2015, 34, 515-556.	0.9	19
46	The Role of Water on C-S-H Gel Shear Strength Studied by Molecular Dynamics Simulations. , 2015, , .		1
47	Hydration Mechanism of Reactive and Passive Dicalcium Silicate Polymorphs from Molecular Simulations. Journal of Physical Chemistry C, 2015, 119, 19869-19875.	1.5	68
48	Straightforward Synthetic Protocol for the Introduction of Stabilized Câ€Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry - A European Journal, 2015, 21, 1755-1764.	1.7	22
49	Increased laser action in commercial dyes from fluorination regardless of their skeleton. Laser Physics Letters, 2014, 11, 115818.	0.6	9
50	Micellar charge induced emissive response of a bio-active 3-pyrazolyl-2-pyrazoline derivative: a spectroscopic and quantum chemical analysis. RSC Advances, 2014, 4, 56361-56372.	1.7	7
51	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> s6indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin F Solidâ€State Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilmı <i>s</i> , and	62
52	Ni and RhNi catalysts supported on Zeolites L for hydrogen and syngas production by biogas reforming processes. Chemical Engineering Journal, 2014, 238, 178-188.	6.6	66
53	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	2.2	30
54	A FRET analysis of dye diffusion in core/shell polymer nanoparticles. RSC Advances, 2014, 4, 22115.	1.7	7

#	Article	IF	CITATIONS
55	Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving Oneâ€Pot Assembly of "Clickable―BODIPY Dyes. European Journal of Organic Chemistry, 2014, 2014, 5659-5663.	1.2	25
56	Molecular Forces Governing Shear and Tensile Failure in Clay-Dye Hybrid Materials. Chemistry of Materials, 2014, 26, 4338-4345.	3.2	33
57	Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenediimide. ChemPhysChem, 2014, 15, 2517-2521.	1.0	20
58	Förster Resonance Energy Transfer and Laser Efficiency in Colloidal Suspensions of Dye-Doped Nanoparticles: Concentration Effects. Journal of Physical Chemistry C, 2014, 118, 13107-13117.	1.5	24
59	Highly Luminescent and Optically Switchable Hybrid Material by One-Pot Encapsulation of Dyes into MgAPO-11 Unidirectional Nanopores. ACS Photonics, 2014, 1, 205-211.	3.2	21
60	Focusing on charge-surface interfacial effects to enhance the laser properties of dye-doped nanoparticles. Laser Physics Letters, 2014, 11, 015901.	0.6	3
61	Preparation, Photophysical Characterization, and Modeling of LDS722/Laponite 2D-Ordered Hybrid Films. Langmuir, 2014, 30, 10112-10117.	1.6	9
62	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i>) Derivatives. Organic Letters, 2014, 16, 4364-4367.	2.4	32
63	Microwave Synthesis of LTL Zeolites with Tunable Size and Morphology: An Optimal Support for Metalâ€Catalyzed Hydrogen Production from Biogas Reforming Processes. Particle and Particle Systems Characterization, 2014, 31, 110-120.	1.2	11
64	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	7.8	56
65	8-Functionalization of Alkyl-Substituted-3,8-Dimethyl BODIPYs by Knoevenagel Condensation. Organic Letters, 2013, 15, 4454-4457.	2.4	42
66	Reaction of Amines with 8â€MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chemistry - an Asian Journal, 2013, 8, 2691-2700.	1.7	36
67	Highly efficient and photostable bulk and thin film dye lasers based on new pyrromethene derivatives. , 2013, , .		0
68	Strong intramolecular charge transfer emission in benzobisoxazole cruciforms: solvatochromic dyes as polarity indicators. Physical Chemistry Chemical Physics, 2013, 15, 18023.	1.3	23
69	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	2.2	42
70	Photophysical and Laser Properties of Cassettes based on a BODIPY and Rhodamine Pair. Chemistry - an Asian Journal, 2013, 8, 3133-3141.	1.7	12
71	Blueâ€toâ€Orange Colorâ€Tunable Laser Emission from Tailored Boronâ€Dipyrromethene Dyes. ChemPhysChem, 2013, 14, 4134-4142.	1.0	59
72	Shear deformations in calcium silicate hydrates. Soft Matter, 2013, 9, 7333.	1.2	109

#	Article	IF	CITATIONS
73	Nitro and amino BODIPYS: crucial substituents to modulate their photonic behavior. RSC Advances, 2013, 3, 1547-1556.	1.7	37
74	Naturally Assembled Excimers in Xanthenes as Singular and Highly Efficient Laser Dyes in Liquid and Solid Media. Advanced Optical Materials, 2013, 1, 984-990.	3.6	15
75	Anisotropic fluorescence materials: Effect of the synthesis conditions over the incorporation, alignment and aggregation of Pyronine Y within MgAPO-5. Microporous and Mesoporous Materials, 2013, 172, 190-199.	2.2	7
76	Ultraviolet–Visible Dual Absorption by Single BODIPY Dye Confined in LTL Zeolite Nanochannels. Journal of Physical Chemistry C, 2013, 117, 13331-13336.	1.5	33
77	8-Alkoxy- and 8-Aryloxy-BODIPYs: Straightforward Fluorescent Tagging of Alcohols and Phenols. Journal of Organic Chemistry, 2013, 78, 5867-5877.	1.7	55
78	Modulating Dye Aggregation by Incorporation into 1Dâ€MgAPO Nanochannels. Chemistry - A European Journal, 2013, 19, 9859-9865.	1.7	20
79	One-Dimensional Antenna Systems by Crystallization Inclusion of Dyes (One-Pot Synthesis) within Zeolitic MgAPO-36 Nanochannels. Journal of Physical Chemistry C, 2013, 117, 24063-24070.	1.5	9
80	Charge Transfer and Exciplex Emissions from a Naphthalenediimide-Entangled Coordination Framework Accommodating Various Aromatic Guests. Journal of Physical Chemistry C, 2012, 116, 26084-26090.	1.5	60
81	Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. European Journal of Organic Chemistry, 2012, 2012, 6335-6350.	1.2	92
82	Photophysical and Lasing Properties of Rh6G Confined Polymeric Nanoparticles Suspension. , 2012, , .		0
83	FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photonics, 2012, 6, 621-626.	15.6	137
84	Synthesis and Optical and Redox Properties of Symmetric and Asymmetric BODIPYs. ChemPhysChem, 2012, 13, 3923-3931.	1.0	15
85	8-AminoBODIPYs: Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. Journal of Organic Chemistry, 2012, 77, 5434-5438.	1.7	80
86	Versatile Photoactive Materials Based on Zeoliteâ€L Doped with Laser Dyes. ChemPlusChem, 2012, 77, 61-70.	1.3	18
87	Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron, 2012, 68, 1153-1162.	1.0	117
88	Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach. Journal of Materials Chemistry, 2011, 21, 269-276.	6.7	24
89	Unprecedented laser action from energy transfer in multichromophoric BODIPY cassettes. Chemical Communications, 2011, 47, 11513.	2.2	45
90	Difluoro-boron-triaza-anthracene: a laser dye in the blue region. Theoretical simulation of alternative difluoro-boron-diaza-aromatic systems. Physical Chemistry Chemical Physics, 2011, 13, 3437-3445.	1.3	43

#	Article	IF	CITATIONS
91	Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position RSC Advances, 2011, 1, 677.	1.7	62
92	Photophysical and Lasing Properties of Rhodamine 6G Confined in Polymeric Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 3926-3933.	1.5	28
93	New 8â€Aminoâ€BODIPY Derivatives: Surpassing Laser Dyes at Blueâ€Edge Wavelengths. Chemistry - A European Journal, 2011, 17, 7261-7270.	1.7	141
94	Click Assembly of Dyeâ€Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 2011, 17, 13258-13268.	1.7	29
95	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	1.7	38
96	8-PropargylaminoBODIPY: unprecedented blue-emitting pyrromethene dye. Synthesis, photophysics and laser properties. Chemical Communications, 2010, 46, 5103.	2.2	121
97	Red-edge-wavelength finely-tunable laser action from new BODIPY dyes. Physical Chemistry Chemical Physics, 2010, 12, 7804.	1.3	72
98	On the Arrangements of R6G Molecules in Organophilic C12TMA/Lap Clay Films for Low Dye Loadings. Langmuir, 2010, 26, 930-937.	1.6	19
99	Effect of surfactant C12TMA molecules on the self-association of R6G dye in thin films of laponite clay. Materials Chemistry and Physics, 2009, 116, 550-556.	2.0	22
100	Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. Journal of Luminescence, 2009, 129, 1336-1340.	1.5	8
101	Photophysics of Rhodamine 6G Laser Dye in Ordered Surfactant (C12TMA)/Clay (Laponite) Hybrid Films. Journal of Physical Chemistry C, 2009, 113, 965-970.	1.5	20
102	New Analogues of the BODIPY Dye PM597: Photophysical and Lasing Properties in Liquid Solutions and in Solid Polymeric Matrices. Journal of Physical Chemistry A, 2009, 113, 8118-8124.	1.1	56
103	Photophysical Characterization of New 3-Amino and 3-Acetamido BODIPY Dyes with Solvent Sensitive Properties. Journal of Fluorescence, 2008, 18, 899-907.	1.3	28
104	Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films. Journal of Colloid and Interface Science, 2008, 321, 212-219.	5.0	26
105	New laser dye based on the 3-styryl analog of the BODIPY dye PM567. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 192-199.	2.0	45
106	Photophysical and laser emission studies of 8-polyphenylene-substituted BODIPY dyes in liquid solution and in solid polymeric matrices. Photochemical and Photobiological Sciences, 2008, 7, 802-813.	1.6	32
107	Photophysical Study of New Versatile Multichromophoric Diads and Triads with BODIPY and Polyphenylene Groups. Journal of Physical Chemistry A, 2008, 112, 10816-10822.	1.1	23
108	Bichromatic laser emission from dipyrromethene dyes incorporated into solid polymeric media. Journal of Applied Physics, 2007, 101, 113110.	1.1	5

#	Article	IF	Citations
109	Laser and Physical Properties of BODIPY Chromophores in New Fluorinated Polymeric Materials. Journal of Physical Chemistry C, 2007, 111, 1508-1516.	1.5	34
110	Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media. Advanced Functional Materials, 2007, 17, 3088-3098.	7.8	56
111	Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007, 8, 85-108.	5.6	131
112	Photophysics and lasing correlation of pyrromethene 567 dye in crosslinked polymeric networks. Journal of Luminescence, 2007, 126, 833-837.	1.5	4
113	Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 1. Anisotropy of Rhodamine 6G in Laponite Films by Vis-Absorption with Polarized Light. Chemistry of Materials, 2005, 17, 4134-4141.	3.2	48
114	Structural, photophysical and lasing properties of pyrromethene dyes. International Reviews in Physical Chemistry, 2005, 24, 339-374.	0.9	137
115	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 2 Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 7443-7450.	1.2	181
116	Intramolecular Charge Transfer in Pyrromethene Laser Dyes: Photophysical Behaviour of PM650. ChemPhysChem, 2004, 5, 1762-1771.	1.0	88
117	Theoretical study of the ground and excited electronic states of pyrromethene 546 laser dye and related compounds. Chemical Physics, 2004, 296, 13-22.	0.9	48
118	Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms. Chemical Physics Letters, 2004, 385, 29-35.	1.2	68
119	8-Phenyl-Substituted DipyrrometheneÂ-BF2Complexes as Highly Efficient and Photostable Laser Dyes. Journal of Physical Chemistry A, 2004, 108, 3315-3323.	1.1	79
120	Characterization of Supported Solid Thin Films of Laponite Clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir, 2004, 20, 5709-5717.	1.6	60
121	Structural and spectroscopic characteristics of Pyrromethene 567 laser dye. A theoretical approach. Physical Chemistry Chemical Physics, 2004, 6, 4247-4253.	1.3	35
122	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 1. Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 20030-20037.	1.2	84
123	Photophysical Properties of the Pyrromethene 597 Dye:  Solvent Effect. Journal of Physical Chemistry A, 2004, 108, 5503-5508.	1.1	94
124	Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir, 2002, 18, 2658-2664.	1.6	52
125	Photophysical and Lasing Properties of New Analogs of the Boronâ^'Dipyrromethene Laser Dye PM567 in Liquid Solution. Journal of Physical Chemistry A, 2002, 106, 7736-7742.	1.1	116
126	Aggregation of Rhodamine 3B Adsorbed in Wyoming Montmorillonite Aqueous Suspensions. Journal of Colloid and Interface Science, 2002, 246, 281-287.	5.0	35

#	Article	IF	CITATIONS
127	Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluoromethyl) Tj ETQq1 1 0.784314 t 2001, 73, 19-24.	rgBT /Ovei 1.1	rlock 10 Tf 5 27
128	Spectroscopic Characterization of the Adsorption of Rhodamine 3B in Hectorite. Langmuir, 2000, 16, 1285-1291.	1.6	53
129	Electronic spectroscopy of pyrromethene 546. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121, 177-182.	2.0	38
130	Environmental effects on the photophysics of pyrromethene 556. Physical Chemistry Chemical Physics, 1999, 1, 791-795.	1.3	11
131	Spectroscopy of Rhodamine 6G Adsorbed on Sepiolite Aqueous Suspensions. Journal of Colloid and Interface Science, 1997, 187, 105-112.	5.0	47
132	Characterization of Rhodamine 6G Adsorbed onto Hectorite by Electronic Spectroscopy. Journal of Colloid and Interface Science, 1995, 171, 439-445.	5.0	27
133	On the Monomeric and Dimeric States of Rhodamine 6G Adsorbed on Laponite B Surfaces. Journal of Colloid and Interface Science, 1994, 162, 412-417.	5.0	34
134	Binary solvent effects on the absorption and emission of 7-aminocoumarins. Journal of Luminescence, 1994, 59, 369-375.	1.5	27
135	Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives. The Journal of Physical Chemistry, 1993, 97, 4704-4707.	2.9	148
136	On the mechanism of radiationless deactivation of rhodamines. Chemical Physics, 1992, 160, 123-130.	0.9	63
137	TICT and ULM models for the radiationless deactivation of rhodamines. Journal of Chemical Sciences, 1992, 104, 165-171.	0.7	8
138	Photophysics of rhodamines: molecular structure and solvent effects. The Journal of Physical Chemistry, 1991, 95, 2203-2208.	2.9	148
139	Luminescence properties of rhodamines in water/ethanol mixtures. Journal of Luminescence, 1991, 48-49, 400-404.	1.5	32
140	Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chemical Physics, 1989, 130, 371-378.	0.9	85
141	Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. Journal of Luminescence, 1989, 44, 105-112.	1.5	205
142	Self-association of the molecular forms of Rhodamine 19. Solvent effect. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989, 45, 1201-1206.	0.1	12
143	On the aggregation of rhodamine B in ethanol. Chemical Physics Letters, 1988, 148, 253-258.	1.2	65
144	Study of exciton interaction and the nature of bonding in the aggregation of phenosafranine from concentration-dependent spectral changes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44, 423-428.	0.1	7

#	Article	IF	CITATIONS
145	Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 1903.	1.1	117
146	Excitonic treatment and bonding of aggregates of Rhodamine 6G in ethanol. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 1.	1.1	83
147	Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism. Chemical Physics Letters, 1986, 129, 607-614.	1.2	92
148	Solvent effect on photophysics of the molecular forms of rhodamine B. Solvation models and spectroscopic parameters. Chemical Physics Letters, 1986, 128, 474-479.	1.2	105
149	Spectroscopy of Ni(II) and Zn(II) tetra(p-vinylphenyl) porphyrin: Aggregation characteristics and luminescence properties. Spectrochimica Acta Part A: Molecular Spectroscopy, 1986, 42, 1355-1360.	0.1	6
150	Thermodynamics of the dimerization and trimerization of halofluorescein dyes. Thermochimica Acta, 1983, 60, 219-224.	1.2	9
151	Aggregation of halofluorescein dyes. Dyes and Pigments, 1983, 4, 213-220.	2.0	20
152	Aggregate formation of rhodamine 6G in aqueous solution. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 989.	1.1	135
153	Dimeric states of rhodamine B. Chemical Physics Letters, 1982, 87, 556-560.	1.2	157
154	Dimeric and trimeric states of the fluorescein dianion. Part 1.â€"Molecular structures. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1725-1733.	1.1	95
155	Dimeric and trimeric states of the fluorescein dianion. Part 2.—Effects on fluorescence characteristics. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1735-1742.	1.1	53
156	Molecular forms of rhodamine B. Chemical Physics Letters, 1981, 79, 347-350.	1.2	124
157	Linde Type L Zeolite: A Privileged Porous Support to Develop Photoactive and Catalytic Nanomaterials. , 0, , .		3
158	Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region. , 0, , .		5