Iñigo LÃ³pez-Arbeloa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434514/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. Journal of Luminescence, 1989, 44, 105-112.	3.1	205
2	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 2 Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 7443-7450.	2.6	181
3	Dimeric states of rhodamine B. Chemical Physics Letters, 1982, 87, 556-560.	2.6	157
4	Photophysics of rhodamines: molecular structure and solvent effects. The Journal of Physical Chemistry, 1991, 95, 2203-2208.	2.9	148
5	Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives. The Journal of Physical Chemistry, 1993, 97, 4704-4707.	2.9	148
6	New 8â€Aminoâ€BODIPY Derivatives: Surpassing Laser Dyes at Blueâ€Edge Wavelengths. Chemistry - A European Journal, 2011, 17, 7261-7270.	3.3	141
7	Structural, photophysical and lasing properties of pyrromethene dyes. International Reviews in Physical Chemistry, 2005, 24, 339-374.	2.3	137
8	FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photonics, 2012, 6, 621-626.	31.4	137
9	Aggregate formation of rhodamine 6G in aqueous solution. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 989.	1.1	135
10	Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007, 8, 85-108.	11.6	131
11	Molecular forms of rhodamine B. Chemical Physics Letters, 1981, 79, 347-350.	2.6	124
12	8-PropargylaminoBODIPY: unprecedented blue-emitting pyrromethene dye. Synthesis, photophysics and laser properties. Chemical Communications, 2010, 46, 5103.	4.1	121
13	Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 1903.	1.1	117
14	Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron, 2012, 68, 1153-1162.	1.9	117
15	Photophysical and Lasing Properties of New Analogs of the Boronâ^'Dipyrromethene Laser Dye PM567 in Liquid Solution. Journal of Physical Chemistry A, 2002, 106, 7736-7742.	2.5	116
16	Shear deformations in calcium silicate hydrates. Soft Matter, 2013, 9, 7333.	2.7	109
17	Solvent effect on photophysics of the molecular forms of rhodamine B. Solvation models and spectroscopic parameters. Chemical Physics Letters, 1986, 128, 474-479.	2.6	105
18	Dimeric and trimeric states of the fluorescein dianion. Part 1.—Molecular structures. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1725-1733.	1.1	95

#	Article	IF	CITATIONS
19	Photophysical Properties of the Pyrromethene 597 Dye:  Solvent Effect. Journal of Physical Chemistry A, 2004, 108, 5503-5508.	2.5	94
20	Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism. Chemical Physics Letters, 1986, 129, 607-614.	2.6	92
21	Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. European Journal of Organic Chemistry, 2012, 2012, 6335-6350.	2.4	92
22	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	2.5	92
23	Intramolecular Charge Transfer in Pyrromethene Laser Dyes: Photophysical Behaviour of PM650. ChemPhysChem, 2004, 5, 1762-1771.	2.1	88
24	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	3.3	87
25	Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chemical Physics, 1989, 130, 371-378.	1.9	85
26	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 1. Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 20030-20037.	2.6	84
27	Excitonic treatment and bonding of aggregates of Rhodamine 6G in ethanol. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 1.	1.1	83
28	8-AminoBODIPYs: Cyanines or Hemicyanines? The Effect of the Coplanarity of the Amino Group on Their Optical Properties. Journal of Organic Chemistry, 2012, 77, 5434-5438.	3.2	80
29	Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region. RSC Advances, 2016, 6, 41991-41998.	3.6	80
30	8-Phenyl-Substituted Dipyrromethene·BF2Complexes as Highly Efficient and Photostable Laser Dyes. Journal of Physical Chemistry A, 2004, 108, 3315-3323.	2.5	79
31	Insight on Tricalcium Silicate Hydration and Dissolution Mechanism from Molecular Simulations. ACS Applied Materials & Interfaces, 2015, 7, 14726-14733.	8.0	76
32	Red-edge-wavelength finely-tunable laser action from new BODIPY dyes. Physical Chemistry Chemical Physics, 2010, 12, 7804.	2.8	72
33	Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms. Chemical Physics Letters, 2004, 385, 29-35.	2.6	68
34	Hydration Mechanism of Reactive and Passive Dicalcium Silicate Polymorphs from Molecular Simulations. Journal of Physical Chemistry C, 2015, 119, 19869-19875.	3.1	68
35	Ni and RhNi catalysts supported on Zeolites L for hydrogen and syngas production by biogas reforming processes. Chemical Engineering Journal, 2014, 238, 178-188.	12.7	66
36	On the aggregation of rhodamine B in ethanol. Chemical Physics Letters, 1988, 148, 253-258.	2.6	65

#	Article	IF	CITATIONS
37	On the mechanism of radiationless deactivation of rhodamines. Chemical Physics, 1992, 160, 123-130.	1.9	63
38	Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position RSC Advances, 2011, 1, 677.	3.6	62
39	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> â€indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin F Solidâ€State Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilr 8s 3 and	62
40	Characterization of Supported Solid Thin Films of Laponite Clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir, 2004, 20, 5709-5717.	3.5	60
41	Charge Transfer and Exciplex Emissions from a Naphthalenediimide-Entangled Coordination Framework Accommodating Various Aromatic Guests. Journal of Physical Chemistry C, 2012, 116, 26084-26090.	3.1	60
42	Blueâ€ŧoâ€Orange Colorâ€Tunable Laser Emission from Tailored Boronâ€Dipyrromethene Dyes. ChemPhysChem, 2013, 14, 4134-4142.	2.1	59
43	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	3.3	58
44	Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media. Advanced Functional Materials, 2007, 17, 3088-3098.	14.9	56
45	New Analogues of the BODIPY Dye PM597: Photophysical and Lasing Properties in Liquid Solutions and in Solid Polymeric Matrices. Journal of Physical Chemistry A, 2009, 113, 8118-8124.	2.5	56
46	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	14.9	56
47	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	2.8	56
48	8-Alkoxy- and 8-Aryloxy-BODIPYs: Straightforward Fluorescent Tagging of Alcohols and Phenols. Journal of Organic Chemistry, 2013, 78, 5867-5877.	3.2	55
49	Dimeric and trimeric states of the fluorescein dianion. Part 2.—Effects on fluorescence characteristics. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 1735-1742.	1.1	53
50	Spectroscopic Characterization of the Adsorption of Rhodamine 3B in Hectorite. Langmuir, 2000, 16, 1285-1291.	3.5	53
51	Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir, 2002, 18, 2658-2664.	3.5	52
52	Unprecedented Jâ€Aggregated Dyes in Pure Organic Solvents. Advanced Functional Materials, 2016, 26, 2756-2769.	14.9	52
53	Theoretical study of the ground and excited electronic states of pyrromethene 546 laser dye and related compounds. Chemical Physics, 2004, 296, 13-22.	1.9	48
54	Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 1. Anisotropy of Rhodamine 6G in Laponite Films by Vis-Absorption with Polarized Light. Chemistry of Materials, 2005, 17, 4134-4141.	6.7	48

#	Article	IF	CITATIONS
55	Spectroscopy of Rhodamine 6G Adsorbed on Sepiolite Aqueous Suspensions. Journal of Colloid and Interface Science, 1997, 187, 105-112.	9.4	47
56	New laser dye based on the 3-styryl analog of the BODIPY dye PM567. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 192-199.	3.9	45
57	Unprecedented laser action from energy transfer in multichromophoric BODIPY cassettes. Chemical Communications, 2011, 47, 11513.	4.1	45
58	Nearâ€IR BODIPY Dyes à la Carte—Programmed Orthogonal Functionalization of Rationally Designed Building Blocks. Chemistry - A European Journal, 2016, 22, 1048-1061.	3.3	45
59	Difluoro-boron-triaza-anthracene: a laser dye in the blue region. Theoretical simulation of alternative difluoro-boron-diaza-aromatic systems. Physical Chemistry Chemical Physics, 2011, 13, 3437-3445.	2.8	43
60	8-Functionalization of Alkyl-Substituted-3,8-Dimethyl BODIPYs by Knoevenagel Condensation. Organic Letters, 2013, 15, 4454-4457.	4.6	42
61	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	4.1	42
62	Singlet Fission Mediated Photophysics of BODIPY Dimers. Journal of Physical Chemistry Letters, 2018, 9, 641-646.	4.6	42
63	Electronic spectroscopy of pyrromethene 546. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121, 177-182.	3.9	38
64	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	3.3	38
65	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	3.3	38
66	Nitro and amino BODIPYS: crucial substituents to modulate their photonic behavior. RSC Advances, 2013, 3, 1547-1556.	3.6	37
67	Reaction of Amines with 8â€MethylthioBODIPY: Dramatic Optical and Laser Response to Amine Substitution. Chemistry - an Asian Journal, 2013, 8, 2691-2700.	3.3	36
68	Scope and Limitations of the Liebeskind–Srogl Cross-Coupling Reactions Involving the Biellmann BODIPY. Journal of Organic Chemistry, 2015, 80, 5771-5782.	3.2	36
69	Aggregation of Rhodamine 3B Adsorbed in Wyoming Montmorillonite Aqueous Suspensions. Journal of Colloid and Interface Science, 2002, 246, 281-287.	9.4	35
70	Structural and spectroscopic characteristics of Pyrromethene 567 laser dye. A theoretical approach. Physical Chemistry Chemical Physics, 2004, 6, 4247-4253.	2.8	35
71	On the Monomeric and Dimeric States of Rhodamine 6G Adsorbed on Laponite B Surfaces. Journal of Colloid and Interface Science, 1994, 162, 412-417.	9.4	34
72	Laser and Physical Properties of BODIPY Chromophores in New Fluorinated Polymeric Materials. Journal of Physical Chemistry C, 2007, 111, 1508-1516.	3.1	34

#	Article	IF	CITATIONS
73	Benchmark of ReaxFF force field for subcritical and supercritical water. Journal of Chemical Physics, 2018, 148, 234503.	3.0	34
74	Ultraviolet–Visible Dual Absorption by Single BODIPY Dye Confined in LTL Zeolite Nanochannels. Journal of Physical Chemistry C, 2013, 117, 13331-13336.	3.1	33
75	Molecular Forces Governing Shear and Tensile Failure in Clay-Dye Hybrid Materials. Chemistry of Materials, 2014, 26, 4338-4345.	6.7	33
76	Luminescence properties of rhodamines in water/ethanol mixtures. Journal of Luminescence, 1991, 48-49, 400-404.	3.1	32
77	Photophysical and laser emission studies of 8-polyphenylene-substituted BODIPY dyes in liquid solution and in solid polymeric matrices. Photochemical and Photobiological Sciences, 2008, 7, 802-813.	2.9	32
78	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i> Derivatives. Organic Letters, 2014, 16, 4364-4367.	4.6	32
79	Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red-Emitting Laser Dyes. Journal of Organic Chemistry, 2019, 84, 2523-2541.	3.2	31
80	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	4.1	30
81	<i>N</i> â€BODIPYs Come into Play: Smart Dyes for Photonic Materials. Chemistry - A European Journal, 2017, 23, 9383-9390.	3.3	30
82	Click Assembly of Dyeâ€Functionalized Octasilsesquioxanes for Highly Efficient and Photostable Photonic Systems. Chemistry - A European Journal, 2011, 17, 13258-13268.	3.3	29
83	Photophysical Characterization of New 3-Amino and 3-Acetamido BODIPY Dyes with Solvent Sensitive Properties. Journal of Fluorescence, 2008, 18, 899-907.	2.5	28
84	Photophysical and Lasing Properties of Rhodamine 6G Confined in Polymeric Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 3926-3933.	3.1	28
85	FormylBODIPYs: Privileged Building Blocks for Multicomponent Reactions. The Case of the Passerini Reaction. Journal of Organic Chemistry, 2016, 81, 2888-2898.	3.2	28
86	Binary solvent effects on the absorption and emission of 7-aminocoumarins. Journal of Luminescence, 1994, 59, 369-375.	3.1	27
87	Characterization of Rhodamine 6G Adsorbed onto Hectorite by Electronic Spectroscopy. Journal of Colloid and Interface Science, 1995, 171, 439-445.	9.4	27
88	Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluoromethyl) Tj ETQq0 0 0 rgBT /Ov 2001, 73, 19-24.	erlock 10 2.2	Tf 50 147 To 27
89	Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films. Journal of Colloid and Interface Science, 2008, 321, 212-219.	9.4	26
90	Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving Oneâ€Pot Assembly of "Clickable―BODIPY Dyes. European Journal of Organic Chemistry, 2014, 2014, 5659-5663.	2.4	25

#	Article	IF	CITATIONS
91	Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach. Journal of Materials Chemistry, 2011, 21, 269-276.	6.7	24
92	Förster Resonance Energy Transfer and Laser Efficiency in Colloidal Suspensions of Dye-Doped Nanoparticles: Concentration Effects. Journal of Physical Chemistry C, 2014, 118, 13107-13117.	3.1	24
93	One-Pot Synthesis of Rotationally Restricted, Conjugatable, BODIPY Derivatives from Phthalides. Journal of Organic Chemistry, 2017, 82, 1240-1247.	3.2	24
94	Photophysical Study of New Versatile Multichromophoric Diads and Triads with BODIPY and Polyphenylene Groups. Journal of Physical Chemistry A, 2008, 112, 10816-10822.	2.5	23
95	Strong intramolecular charge transfer emission in benzobisoxazole cruciforms: solvatochromic dyes as polarity indicators. Physical Chemistry Chemical Physics, 2013, 15, 18023.	2.8	23
96	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	4.1	23
97	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	3.3	23
98	Effect of surfactant C12TMA molecules on the self-association of R6G dye in thin films of laponite clay. Materials Chemistry and Physics, 2009, 116, 550-556.	4.0	22
99	Straightforward Synthetic Protocol for the Introduction of Stabilized Câ€Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry - A European Journal, 2015, 21, 1755-1764.	3.3	22
100	Formation of a Nonlinear Optical Host–Guest Hybrid Material by Tight Confinement of LDSâ€722 into Aluminophosphate 1D Nanochannels. Chemistry - A European Journal, 2016, 22, 15700-15711.	3.3	22
101	Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads. Dalton Transactions, 2017, 46, 11830-11839.	3.3	22
102	Highly Luminescent and Optically Switchable Hybrid Material by One-Pot Encapsulation of Dyes into MgAPO-11 Unidirectional Nanopores. ACS Photonics, 2014, 1, 205-211.	6.6	21
103	Water Adsorption on the β-Dicalcium Silicate Surface from DFT Simulations. Minerals (Basel,) Tj ETQq1 1 0.7843	14 rgBT /(2.0	Overlock 10 1
104	Methylthio BODIPY as a standard triplet photosensitizer for singlet oxygen production: a photophysical study. Physical Chemistry Chemical Physics, 2019, 21, 20403-20414.	2.8	21
105	Aggregation of halofluorescein dyes. Dyes and Pigments, 1983, 4, 213-220.	3.7	20
106	Photophysics of Rhodamine 6G Laser Dye in Ordered Surfactant (C12TMA)/Clay (Laponite) Hybrid Films. Journal of Physical Chemistry C, 2009, 113, 965-970.	3.1	20
107	Modulating Dye Aggregation by Incorporation into 1Dâ€MgAPO Nanochannels. Chemistry - A European Journal, 2013, 19, 9859-9865.	3.3	20
108	Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenedijmide, ChemPhysChem, 2014, 15, 2517-2521	2.1	20

#	Article	IF	CITATIONS
109	On the Arrangements of R6G Molecules in Organophilic C12TMA/Lap Clay Films for Low Dye Loadings. Langmuir, 2010, 26, 930-937.	3.5	19
110	Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. International Reviews in Physical Chemistry, 2015, 34, 515-556.	2.3	19
111	Versatile Photoactive Materials Based on Zeoliteâ€L Doped with Laser Dyes. ChemPlusChem, 2012, 77, 61-70.	2.8	18
112	Strategies for modulating the luminescence properties of pyronin Y dye–clay films: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 8730-8738.	2.8	18
113	Cs-137 immobilization in C-S-H gel nanopores. Physical Chemistry Chemical Physics, 2018, 20, 9289-9297.	2.8	18
114	Photoactive Nanomaterials Inspired by Nature: LTL Zeolite Doped with Laser Dyes as Artificial Light Harvesting Systems. Materials, 2017, 10, 495.	2.9	17
115	Fully Functionalizable β,β′-BODIPY Dimer: Synthesis, Structure, and Photophysical Signatures. Journal of Organic Chemistry, 2018, 83, 10186-10196.	3.2	17
116	Synthesis and Optical and Redox Properties of Symmetric and Asymmetric BODIPYs. ChemPhysChem, 2012, 13, 3923-3931.	2.1	15
117	Naturally Assembled Excimers in Xanthenes as Singular and Highly Efficient Laser Dyes in Liquid and Solid Media. Advanced Optical Materials, 2013, 1, 984-990.	7.3	15
118	Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 13746-13755.	2.8	13
119	One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates. ACS Photonics, 2018, 5, 151-157.	6.6	13
120	Self-association of the molecular forms of Rhodamine 19. Solvent effect. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989, 45, 1201-1206.	0.1	12
121	Photophysical and Laser Properties of Cassettes based on a BODIPY and Rhodamine Pair. Chemistry - an Asian Journal, 2013, 8, 3133-3141.	3.3	12
122	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	3.7	12
123	Environmental effects on the photophysics of pyrromethene 556. Physical Chemistry Chemical Physics, 1999, 1, 791-795.	2.8	11
124	Microwave Synthesis of LTL Zeolites with Tunable Size and Morphology: An Optimal Support for Metal atalyzed Hydrogen Production from Biogas Reforming Processes. Particle and Particle Systems Characterization, 2014, 31, 110-120.	2.3	11
125	Synthesis, Properties, and Functionalization of Nonsymmetric 8â€MethylthioBODIPYs. European Journal of Organic Chemistry, 2016, 2016, 5009-5023.	2.4	11
126	Stereochemical and Steric Control of Photophysical and Chiroptical Properties in Bichromophoric Systems. Chemistry - A European Journal, 2018, 24, 3802-3815.	3.3	11

#	Article	IF	CITATIONS
127	Thermodynamics of the dimerization and trimerization of halofluorescein dyes. Thermochimica Acta, 1983, 60, 219-224.	2.7	9
128	One-Dimensional Antenna Systems by Crystallization Inclusion of Dyes (One-Pot Synthesis) within Zeolitic MgAPO-36 Nanochannels. Journal of Physical Chemistry C, 2013, 117, 24063-24070.	3.1	9
129	Increased laser action in commercial dyes from fluorination regardless of their skeleton. Laser Physics Letters, 2014, 11, 115818.	1.4	9
130	Preparation, Photophysical Characterization, and Modeling of LDS722/Laponite 2D-Ordered Hybrid Films. Langmuir, 2014, 30, 10112-10117.	3.5	9
131	Synthesis, Photophysical Study, and Biological Application Analysis of Complex Borondipyrromethene Dyes. ACS Omega, 2018, 3, 7783-7797.	3.5	9
132	Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. Journal of Luminescence, 2009, 129, 1336-1340.	3.1	8
133	TICT and ULM models for the radiationless deactivation of rhodamines. Journal of Chemical Sciences, 1992, 104, 165-171.	1.5	8
134	Study of exciton interaction and the nature of bonding in the aggregation of phenosafranine from concentration-dependent spectral changes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44, 423-428.	0.1	7
135	Anisotropic fluorescence materials: Effect of the synthesis conditions over the incorporation, alignment and aggregation of Pyronine Y within MgAPO-5. Microporous and Mesoporous Materials, 2013, 172, 190-199.	4.4	7
136	Micellar charge induced emissive response of a bio-active 3-pyrazolyl-2-pyrazoline derivative: a spectroscopic and quantum chemical analysis. RSC Advances, 2014, 4, 56361-56372.	3.6	7
137	A FRET analysis of dye diffusion in core/shell polymer nanoparticles. RSC Advances, 2014, 4, 22115.	3.6	7
138	Enhanced Charge-Transfer Emission in Polyimides by Cyano-Groups Doping. Journal of Physical Chemistry B, 2015, 119, 5685-5692.	2.6	7
139	Solvent‣ensitive Emitting Ureaâ€Bridged bisâ€BODIPYs: Ready Access by a Oneâ€Pot Tandem Staudinger/Azaâ€Wittig Ureation. Chemistry - A European Journal, 2017, 23, 17511-17520.	3.3	7
140	A versatile synthetic approach to design tailor-made push-pull chromophores with intriguing and tunable photophysical signatures. Dyes and Pigments, 2017, 147, 246-259.	3.7	7
141	Shedding light on the mitochondrial matrix through a functional membrane transporter. Chemical Science, 2020, 11, 1052-1065.	7.4	7
142	Mechanochemistry as a Sustainable Method for the Preparation of Fluorescent Ugi BODIPY Adducts. European Journal of Organic Chemistry, 2021, 2021, 253-265.	2.4	7
143	Spectroscopy of Ni(II) and Zn(II) tetra(p-vinylphenyl) porphyrin: Aggregation characteristics and luminescence properties. Spectrochimica Acta Part A: Molecular Spectroscopy, 1986, 42, 1355-1360.	0.1	6
144	Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers, 2018, 10, 188.	4.5	6

#	Article	IF	CITATIONS
145	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	3.5	6
146	Bichromatic laser emission from dipyrromethene dyes incorporated into solid polymeric media. Journal of Applied Physics, 2007, 101, 113110.	2.5	5
147	Tailoring the Photophysical Signatures of BODIPY Dyes: Toward Fluorescence Standards across the Visible Spectral Region. , 0, , .		5
148	Photophysics and lasing correlation of pyrromethene 567 dye in crosslinked polymeric networks. Journal of Luminescence, 2007, 126, 833-837.	3.1	4
149	Focusing on charge-surface interfacial effects to enhance the laser properties of dye-doped nanoparticles. Laser Physics Letters, 2014, 11, 015901.	1.4	3
150	Emission properties of dye-doped cationic nanoparticles: size, surfactant and monomeric composition effects. RSC Advances, 2015, 5, 4454-4462.	3.6	3
151	Linde Type L Zeolite: A Privileged Porous Support to Develop Photoactive and Catalytic Nanomaterials. , 0, , .		3
152	Enhancement of NIR emission by a tight confinement of a hemicyanine dye within zeolitic MgAPO-5 nanochannels. Photochemical and Photobiological Sciences, 2018, 17, 917-922.	2.9	3
153	Ready Access to Molecular Rotors Based on Boron Dipyrromethene Dyes-Coumarin Dyads Featuring Broadband Absorption. Molecules, 2020, 25, 781.	3.8	3
154	Distinctive Diffusion Regimes of Organic Molecules in Clays: (De)Coupled Motion with Water. Journal of Physical Chemistry C, 2019, 123, 511-516.	3.1	2
155	The Role of Water on C-S-H Gel Shear Strength Studied by Molecular Dynamics Simulations. , 2015, , .		1
156	Dye Encapsulation Into One-Dimensional Zeolitic Materials for Optical Applications. , 2019, , 229-248.		1
157	Photophysical and Lasing Properties of Rh6G Confined Polymeric Nanoparticles Suspension. , 2012, , .		0
158	Highly efficient and photostable bulk and thin film dye lasers based on new pyrromethene derivatives. , 2013, , .		0