List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434431/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The sputtering of titanium magnetron target with increased temperature in reactive atmosphere by gas injection magnetron sputtering technique. Applied Surface Science, 2022, 574, 151597.                                                                 | 6.1 | 15        |
| 2  | Application of the plasma surface sintering conditions in the synthesis of ReBx–Ti targets employed<br>for hard films deposition in magnetron sputtering technique. International Journal of Refractory<br>Metals and Hard Materials, 2022, 103, 105756.   | 3.8 | 4         |
| 3  | Design of thin DLC/TiO2 film interference coatings on glass screen protector using a<br>neon–argon-based gas injection magnetron sputtering technique. Diamond and Related Materials,<br>2022, 123, 108859.                                                | 3.9 | 4         |
| 4  | Synthesis of Copper Nitride Layers by the Pulsed Magnetron Sputtering Method Carried out under<br>Various Operating Conditions. Materials, 2021, 14, 2694.                                                                                                 | 2.9 | 11        |
| 5  | TiO2 coating fabrication using gas injection magnetron sputtering technique by independently controlling the gas and power pulses. Thin Solid Films, 2021, 728, 138695.                                                                                    | 1.8 | 8         |
| 6  | Influence of generation control of the magnetron plasma on structure and properties of copper nitride layers. Thin Solid Films, 2020, 694, 137731.                                                                                                         | 1.8 | 12        |
| 7  | TiO2 - based decorative interference coatings produced at industrial conditions. Thin Solid Films, 2020, 711, 138294.                                                                                                                                      | 1.8 | 7         |
| 8  | Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputtering. Materials and Design, 2020, 191, 108634.                                                                  | 7.0 | 7         |
| 9  | The state of coating–substrate interfacial region formed during TiO2 coating deposition by Gas<br>Injection Magnetron Sputtering technique. Surface and Coatings Technology, 2020, 398, 126092.                                                            | 4.8 | 18        |
| 10 | Chemical and structural characterization of tungsten nitride (WNx) thin films synthesized via Gas<br>Injection Magnetron Sputtering technique. Vacuum, 2019, 165, 266-273.                                                                                 | 3.5 | 28        |
| 11 | Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering technique. Diamond and Related Materials, 2019, 96, 1-10.                                                                                | 3.9 | 15        |
| 12 | Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Applied Surface Science, 2019, 466, 12-18.                                                                                                        | 6.1 | 27        |
| 13 | Influence of annealing on electronic properties of thin AlN films deposited by magnetron sputtering method on silicon substrates. , 2019, , .                                                                                                              |     | 0         |
| 14 | Characterization of sp 3 bond content of carbon films deposited by high power gas injection<br>magnetron sputtering method by UV and VIS Raman spectroscopy. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2018, 194, 136-140. | 3.9 | 14        |
| 15 | Phase composition of copper nitride coatings examined by the use of X-ray diffraction and Raman spectroscopy. Journal of Molecular Structure, 2018, 1165, 79-83.                                                                                           | 3.6 | 22        |
| 16 | Copper nitride layers synthesized by pulsed magnetron sputtering. Thin Solid Films, 2018, 645, 32-37.                                                                                                                                                      | 1.8 | 23        |
| 17 | Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin films. Applied Surface Science, 2018, 456, 789-796.                                                                          | 6.1 | 19        |
| 18 | Characteristic STATE of substrate and coatings interface formed by Impulse Plasma Deposition method. Thin Solid Films, 2018, 663, 25-30.                                                                                                                   | 1.8 | 3         |

KRZYSZTOF ZDUNEK

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Influence of modulation frequency on the synthesis of thin films in pulsed magnetron sputtering processes. Materials Science-Poland, 2018, 36, 697-703.                                                                                      | 1.0 | 7         |
| 20 | TiO2-based decorative coatings deposited on the AISI 316L stainless steel and glass using an industrial scale magnetron. Thin Solid Films, 2017, 627, 1-8.                                                                                   | 1.8 | 19        |
| 21 | Optical and microstructural characterization of amorphous-like Al 2 O 3 , SnO 2 and TiO 2 thin layers deposited using a pulse gas injection magnetron sputtering technique. Thin Solid Films, 2017, 632, 112-118.                            | 1.8 | 11        |
| 22 | Structure of Cu–N layers synthesized by pulsed magnetron sputtering with variable frequency of plasma generation. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 167-170.                                                   | 1.4 | 8         |
| 23 | Reactive sputtering of titanium compounds using the magnetron system with a grounded cathode.<br>Thin Solid Films, 2017, 640, 73-80.                                                                                                         | 1.8 | 6         |
| 24 | Multi-sided metallization of textile fibres by using magnetron system with grounded cathode.<br>Materials Science-Poland, 2017, 35, 639-646.                                                                                                 | 1.0 | 5         |
| 25 | Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in<br>glioblastoma cell lines by impairing extracellular adhesion. International Journal of Nanomedicine,<br>2017, Volume 12, 7241-7254.             | 6.7 | 33        |
| 26 | Titanium nitride coatings synthesized by IPD method with eliminated current oscillations. Materials<br>Science-Poland, 2016, 34, 523-528.                                                                                                    | 1.0 | 2         |
| 27 | Novel GIMS technique for deposition of colored Ti/TiOâ,, coatings on industrial scale. Materials<br>Science-Poland, 2016, 34, 137-141.                                                                                                       | 1.0 | 16        |
| 28 | The application of magnetic self-filter to optimization of AIN film growth process during the impulse plasma deposition synthesis. Materials Science-Poland, 2016, 34, 126-131.                                                              | 1.0 | 1         |
| 29 | The role of magnetic energy on plasma localization during the glow discharge under reduced pressure. Nukleonika, 2016, 61, 191-194.                                                                                                          | 0.8 | 4         |
| 30 | OES studies of plasmoids distribution during the coating deposition with the use of the Impulse Plasma Deposition method controlled by the gas injection. Vacuum, 2016, 128, 259-264.                                                        | 3.5 | 7         |
| 31 | Structure of AlN films deposited by magnetron sputtering method. Materials Science-Poland, 2015, 33, 639-643.                                                                                                                                | 1.0 | 1         |
| 32 | Synthesis of multicomponent metallic layers during impulse plasma deposition. Materials<br>Science-Poland, 2015, 33, 841-846.                                                                                                                | 1.0 | 5         |
| 33 | Peculiar Role of the Metallic States on the Nanoâ€ <scp>M</scp> o <scp>S</scp> <sub>2</sub> Ceramic<br>Particle Surface in Antimicrobial and Antifungal Activity. International Journal of Applied Ceramic<br>Technology, 2015, 12, 885-890. | 2.1 | 18        |
| 34 | Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition.<br>Materials Science-Poland, 2015, 33, 894-901.                                                                                          | 1.0 | 6         |
| 35 | Characterization of microstructural, mechanical and optical properties of TiO2 layers deposited by GIMS and PMS methods. Surface and Coatings Technology, 2015, 282, 16-23.                                                                  | 4.8 | 44        |
| 36 | On coating adhesion during impulse plasma deposition. Physica Scripta, 2014, T161, 014063.                                                                                                                                                   | 2.5 | 7         |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Computational modelling of discharges within the impulse plasma deposition accelerator with a gas valve. Physica Scripta, 2014, T161, 014049.                                                                            | 2.5  | 6         |
| 38 | Electric field used as the substitute for ultrasounds in the liquid exfoliation of hexagonal boron nitride. Microelectronic Engineering, 2014, 126, 124-128.                                                             | 2.4  | 17        |
| 39 | Impulse Plasma In Surface Engineering - a review. Journal of Physics: Conference Series, 2014, 564, 012007.                                                                                                              | 0.4  | 10        |
| 40 | Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method. Materials Science-Poland, 2014, 32, 171-175.                                                                     | 1.0  | 14        |
| 41 | Nanoparticle Direct Doping: Novel Method for Manufacturing Threeâ€Dimensional Bulk Plasmonic<br>Nanocomposites. Advanced Functional Materials, 2013, 23, 3443-3451.                                                      | 14.9 | 48        |
| 42 | Gas injection as a tool for plasma process control during coating deposition. Surface and Coatings<br>Technology, 2013, 228, S367-S373.                                                                                  | 4.8  | 31        |
| 43 | Dependence of the specific features of two PAPVD methods: Impulse Plasma Deposition (IPD) and Pulsed<br>Magnetron Sputtering (PMS) on the structure of Fe–Cu alloy layers. Applied Surface Science, 2013, 275,<br>14-18. | 6.1  | 23        |
| 44 | Structure of Fe–Cu alloy layers deposited by IPD method with different frequencies of plasma impulse generation. Surface and Coatings Technology, 2010, 204, 2564-2569.                                                  | 4.8  | 8         |
| 45 | Morphology of the TiN coatings obtained by the IPD method with two frequencies of impulse plasma generation. Surface and Coatings Technology, 2010, 205, S28-S31.                                                        | 4.8  | 3         |
| 46 | Properties of TiN coatings deposited by the modified IPD method. Vacuum, 2010, 85, 514-517.                                                                                                                              | 3.5  | 18        |
| 47 | Nanostructured Alloy Layers With Magnetic Properties Obtained by the Impulse Plasma Deposition.<br>Plasma Processes and Polymers, 2009, 6, S826.                                                                         | 3.0  | 6         |
| 48 | Electric Characterization and Selective Etching of Aluminum Oxide. Plasma Processes and Polymers, 2009, 6, S840.                                                                                                         | 3.0  | 17        |
| 49 | The Influence of Growth Temperature on Oxygen Concentration in GaN Buffer Layer. Materials<br>Research Society Symposia Proceedings, 2008, 1068, 1.                                                                      | 0.1  | 1         |
| 50 | MHD Modelling of Flow Phenomena during the Impulse Plasma Deposition Process. AIP Conference<br>Proceedings, 2008, , .                                                                                                   | 0.4  | 0         |
| 51 | Modeling of Flow Phenomena During the Impulse Plasma Deposition Process. , 2007, , .                                                                                                                                     |      | 1         |
| 52 | Computational studies of plasma dynamics in Impulse Plasma Deposition coaxial accelerator. Surface and Coatings Technology, 2007, 201, 5438-5441.                                                                        | 4.8  | 6         |
| 53 | Concept, techniques, deposition mechanism of impulse plasma deposition — A short review. Surface and Coatings Technology, 2007, 201, 4813-4816.                                                                          | 4.8  | 40        |
| 54 | Layers of magnetic alloys produced by impulse plasma deposition. Surface and Coatings Technology, 2007, 201, 5333-5335.                                                                                                  | 4.8  | 3         |

| #  | Article                                                                                                                                                                                                                                  | IF               | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 55 | Studies of Discharge Parameters Influence on the IPD Plasma Deposition Process. AIP Conference<br>Proceedings, 2006, , .                                                                                                                 | 0.4              | 0            |
| 56 | Growth of nanopillar CNx layer during impulse plasma deposition. Surface and Coatings Technology, 2006, 200, 4448-4455.                                                                                                                  | 4.8              | 1            |
| 57 | Mechanism of coating formation in conditions of impulse plasma deposition. Surface and Coatings<br>Technology, 2006, 200, 2718-2724.                                                                                                     | 4.8              | 4            |
| 58 | Impulse plasma deposition of magnetic nanocomposite layers. Vacuum, 2005, 77, 287-291.                                                                                                                                                   | 3.5              | 6            |
| 59 | Phase structure of the Fe–Ti layers produced by the IPD method. Vacuum, 2005, 78, 423-426.                                                                                                                                               | 3.5              | 6            |
| 60 | Studies of squirrel cage type coaxial accelerator for IPD process. Surface and Coatings Technology, 2005, 200, 788-791.                                                                                                                  | 4.8              | 2            |
| 61 | Structural features of films obtained by the impulse plasma deposition method. Surface and Coatings<br>Technology, 2005, 200, 301-305.                                                                                                   | 4.8              | 3            |
| 62 | Influence of the gas pressure on the initial phase in coaxial accelerator. European Physical Journal D, 2004, 54, C186-C190.                                                                                                             | 0.4              | 0            |
| 63 | Investigations of discharge phenomena in IPD coaxial accelerator with squirrel cage electrodes.<br>European Physical Journal D, 2004, 54, C279-C284.                                                                                     | 0.4              | 0            |
| 64 | Peculiarities of thin film deposition by means of reactive impulse plasma assisted chemical vapor deposition (RIPACVD) method. Thin Solid Films, 2004, 459, 160-164.                                                                     | 1.8              | 18           |
| 65 | Snow plow model of IPD discharge. Vacuum, 2003, 70, 303-306.                                                                                                                                                                             | 3.5              | 21           |
| 66 | Impulse plasma deposition of aluminum oxide layers for Al2O3/Si, SiC, GaN systems. Surface and<br>Coatings Technology, 2003, 174-175, 170-175.                                                                                           | 4.8              | 13           |
| 67 | Rayleigh–Taylor instability in plasma jet from IPD accelerator. Surface and Coatings Technology, 2003, 174-175, 964-967.                                                                                                                 | 4.8              | 5            |
| 68 | Effect of structural features of poly(butylene terephthalate) tubes on the useful properties of the<br>loose tube/optical fibers system in the tubular optical fiber cables. Journal of Applied Polymer Science,<br>2002, 86, 2124-2129. | 2.6              | 1            |
| 69 | The effect of structural features on mechanical properties of loose optical fiber poly(butylene) Tj ETQq1 1 0.78                                                                                                                         | 4314 rgBT<br>2.6 | /Ovgrlock 10 |
| 70 | Physical Phenomena in Z-pinch Plasma of Impulse Plasma Deposition Process. Acta Physica Polonica A,<br>2002, 102, 193-197.                                                                                                               | 0.5              | 1            |
| 71 | Modelling of plasma dynamics in coaxial IPD accelerator. High Temperature Material Processes, 2002, 6, 7.                                                                                                                                | 0.6              | 0            |
| 72 | Investigation of current sheet dynamics in the IPD accelerator. Vacuum, 2001, 63, 513-516.                                                                                                                                               | 3.5              | 2            |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Experimental studies of current sheet structure in IPD coaxial accelerator. Surface and Coatings<br>Technology, 2001, 142-144, 49-51.                                                                                                                                       | 4.8 | 8         |
| 74 | Investigation of adhesion between component layers of a multi-layer coating TiC/Ti(Cx, N1â^'x)/TiN by the scratch-test method. Vacuum, 1999, 55, 45-50.                                                                                                                     | 3.5 | 22        |
| 75 | Effect of interlayer composition on the tribological properties of TiC/Ti(Cx,N1â^'x)/TiN anti-abrasive multi-layer coatings. Vacuum, 1999, 55, 147-151.                                                                                                                     | 3.5 | 15        |
| 76 | Computer simulations and experimental results in studies of plasma dynamics during the impulse plasma deposition process. Surface and Coatings Technology, 1999, 116-119, 679-684.                                                                                          | 4.8 | 10        |
| 77 | Investigation of the influence of chemical composition of Ti(CxN1â^'x) layer on the stresses value in the multilayer coating TiC/Ti(CxN1â^'x)/TiN. Surface and Coatings Technology, 1999, 116-119, 398-403.                                                                 | 4.8 | 10        |
| 78 | Structure of alumina oxide coatings deposited by impulse plasma method. Thin Solid Films, 1999, 343-344, 324-327.                                                                                                                                                           | 1.8 | 5         |
| 79 | Influence of Plasma Dynamics on Material Synthesis Product of IPD Process. Acta Physica Polonica A,<br>1999, 96, 319-324.                                                                                                                                                   | 0.5 | 1         |
| 80 | The influence of the tribological properties of the crystallographic match of TiCâ§¹Ti(CxN1-x)â§¹TiN<br>multi-layers. Vacuum, 1998, 51, 441-444.                                                                                                                            | 3.5 | 8         |
| 81 | Duplex antiabrasive coatings (Fe-based alloy-tin) produced by impulse plasma deposition. Surface and<br>Coatings Technology, 1998, 98, 1444-1447.                                                                                                                           | 4.8 | 2         |
| 82 | Combined impulse-stationary impulse plasma deposition. Surface and Coatings Technology, 1998, 98, 1448-1454.                                                                                                                                                                | 4.8 | 12        |
| 83 | Physical model of dynamic phenomena in impulse plasma coaxial accelerator. Vacuum, 1997, 48, 715-718.                                                                                                                                                                       | 3.5 | 27        |
| 84 | Nanocrystalline C=N thin films. Diamond and Related Materials, 1996, 5, 564-569.                                                                                                                                                                                            | 3.9 | 16        |
| 85 | Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 1996, 47, 1391-1394.                                                                                                                                                                   | 3.5 | 16        |
| 86 | Defects developed in Ni-coatings deposited by the impulse plasma on metal substrates. Vacuum, 1996, 47,<br>1437-1441.                                                                                                                                                       | 3.5 | 4         |
| 87 | Spreading of impulse plasma within a coaxial accelerator. Surface and Coatings Technology, 1995, 74-75, 949-952.                                                                                                                                                            | 4.8 | 29        |
| 88 | Nanoporosity of Al2O3 coatings obtained by impulse plasma deposition. Journal of Materials Science, 1995, 30, 4479-4482.                                                                                                                                                    | 3.7 | 6         |
| 89 | Transmission electron microscopy investigation into the recrystallization of carbon resulting from<br>laser processing of carbon-implanted copper. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 1995, 190, L1-L3. | 5.6 | 0         |
| 90 | Laser-induced reactive crystallization of metastable BN from copper implanted with B+ and N2+ ions.<br>Diamond and Related Materials, 1995, 4, 381-385.                                                                                                                     | 3.9 | 6         |

**KRZYSZTOF ZDUNEK** 

0

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Estimation of the coating/substrate interface temperature during deposition by impulse plasma excitation. Vacuum, 1993, 44, 93-97.                                                                                  | 3.5 | 15        |
| 92 | Synthesis of Al2O3 condensates from impulse plasma. Surface and Coatings Technology, 1993, 59, 281-286.                                                                                                             | 4.8 | 10        |
| 93 | Graphite microregions effect upon the Si-diamond layer junction properties. Diamond and Related Materials, 1992, 1, 588-593.                                                                                        | 3.9 | 11        |
| 94 | Reduction of turbulence in an impulse-plasma accelerator operating in a quasi-stayionary mode.<br>Vacuum, 1991, 42, 469-472.                                                                                        | 3.5 | 14        |
| 95 | Formation of metallic coatings on non-heated substrates by the impulse plasma method. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991,<br>140, 709-714. | 5.6 | 9         |
| 96 | Diamond layers deposited from impulse plasma. Surface and Coatings Technology, 1991, 47, 144-155.                                                                                                                   | 4.8 | 20        |
| 97 | Mechanism of crystallization of multicomponent metallic coatings using the impulse plasma method.<br>Journal of Materials Science, 1991, 26, 4433-4438.                                                             | 3.7 | 40        |
| 98 | State of impulse plasma in the coaxial generator with continuous gas flow examined by indirect observations. Vacuum, 1989, 39, 55-61.                                                                               | 3.5 | 25        |
| 99 | The structure and mechanical properties of carbon layers formed by crystallization from pulse plasma. Journal of Materials Science, 1986, 21, 763-767.                                                              | 3.7 | 24        |
|    |                                                                                                                                                                                                                     |     |           |

100 Computational Studies of the Impulse Plasma Deposition Method. , 0, , .