Fleur Couvreux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434349/publications.pdf

Version: 2024-02-01

54 2,697 25
papers citations h-index

25 50
h-index g-index

61 61 docs citations

61 times ranked 3247 citing authors

#	Article	IF	CITATIONS
1	Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. Journal of Advances in Modeling Earth Systems, 2011 , 3 , n/a - n/a .	1.3	249
2	Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nature Geoscience, 2011, 4, 430-433.	5.4	240
3	A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction. Boundary-Layer Meteorology, 2009, 132, 83-106.	1.2	225
4	Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 2018, 11, 1929-1969.	1.3	194
5	A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale. Journals of the Atmospheric Sciences, 2011, 68, 3112-3131.	0.6	163
6	The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmospheric Chemistry and Physics, 2014, 14, 10931-10960.	1.9	151
7	Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16816-16823.	3.3	119
8	Parameterization of the Dry Convective Boundary Layer Based on a Mass Flux Representation of Thermals. Journals of the Atmospheric Sciences, 2002, 59, 1105-1123.	0.6	98
9	Understanding the Daily Cycle of Evapotranspiration: A Method to Quantify the Influence of Forcings and Feedbacks. Journal of Hydrometeorology, 2010, 11, 1405-1422.	0.7	89
10	Resolved Versus Parametrized Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling in Large-Eddy Simulations. Boundary-Layer Meteorology, 2010, 134, 441-458.	1.2	81
11	Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2665-2693.	1.0	64
12	Resolved Versus Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for Mass-Flux Schemes. Boundary-Layer Meteorology, 2010, 135, 469-483.	1.2	64
13	Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model. Climate Dynamics, 2013, 40, 2271-2292.	1.7	59
14	Diurnal and Seasonal Cycles of Cloud Occurrences, Types, and Radiative Impact over West Africa. Journal of Applied Meteorology and Climatology, 2012, 51, 534-553.	0.6	53
15	Synoptic variability of the monsoon flux over West Africa prior to the onset. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 159-173.	1.0	45
16	Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling. Geoscientific Model Development, 2015, 8, 129-150.	1.3	44
17	Life Cycle of a Mesoscale Circular Gust Front Observed by a C-Band Doppler Radar in West Africa. Monthly Weather Review, 2011, 139, 1370-1388.	0.5	43
18	Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Boundary-Layer Meteorology, 2007, 123, 269-294.	1.2	40

#	Article	IF	Citations
19	Deep Convection Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic Triggering Formulation. Journals of the Atmospheric Sciences, 2014, 71, 496-514.	0.6	35
20	Initiation of daytime local convection in a semiâ€arid region analysed with highâ€resolution simulations and AMMA observations. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 56-71.	1.0	34
21	Deep Convection Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering Parameterization for the LMDZ GCM. Journals of the Atmospheric Sciences, 2014, 71, 515-538.	0.6	34
22	Sampling the Structure of Convective Turbulence and Implications for Grey-Zone Parametrizations. Boundary-Layer Meteorology, 2016, 160, 133-156.	1.2	34
23	A short review of numerical cloud-resolving models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1373578.	0.8	34
24	A Pathâ€Tracing Monte Carlo Library for 3â€D Radiative Transfer in Highly Resolved Cloudy Atmospheres. Journal of Advances in Modeling Earth Systems, 2019, 11, 2449-2473.	1.3	33
25	Processâ€Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002217.	1.3	32
26	Detection of Intraseasonal Large-Scale Heat Waves: Characteristics and Historical Trends during the Sahelian Spring. Journal of Climate, 2018, 31, 61-80.	1.2	29
27	Objectâ€Oriented Identification of Coherent Structures in Large Eddy Simulations: Importance of Downdrafts in Stratocumulus. Geophysical Research Letters, 2019, 46, 2854-2864.	1.5	28
28	Intercomparison of Large-Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratification. Boundary-Layer Meteorology, 2020, 176, 369-400.	1.2	28
29	Observations of Diurnal Cycles Over a West African Meridional Transect: Pre-Monsoon and Full-Monsoon Seasons. Boundary-Layer Meteorology, 2012, 144, 329-357.	1.2	27
30	Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds. Boundary-Layer Meteorology, 2013, 147, 421-441.	1.2	27
31	Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 500-516.	1.0	25
32	Representation of daytime moist convection over the semiâ€arid Tropics by parametrizations used in climate and meteorological models. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2220-2236.	1.0	23
33	Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 463-478.	1.0	23
34	Internal processes within the African Easterly Wave system. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1121-1136.	1.0	21
35	Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Boundary-Layer Meteorology, 2007, 124, 425-447.	1.2	20
36	Evaluation of Statistical Distributions for the Parametrization of Subgrid Boundary-Layer Clouds. Boundary-Layer Meteorology, 2011, 140, 263-294.	1.2	20

3

#	Article	IF	Citations
37	Observations and Large-Eddy Simulations of Entrainment in the Sheared Sahelian Boundary Layer. Boundary-Layer Meteorology, 2012, 142, 79-101.	1.2	19
38	Unified Parameterization of Convective Boundary Layer Transport and Clouds With the Thermal Plume Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2910-2933.	1.3	19
39	Processâ€Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002225.	1.3	18
40	Evaluation of a Buoyancy and Shear Based Mixing Length for a Turbulence Scheme. Frontiers in Earth Science, 2017, 5, .	0.8	16
41	Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002 during the IHOP_2002 Campaign. Monthly Weather Review, 2009, 137, 414-432.	0.5	15
42	Modelling of the Thermodynamical Diurnal Cycle in the Lower Atmosphere: A Joint Evaluation of Four Contrasted Regimes in the Tropics Over Land. Boundary-Layer Meteorology, 2014, 150, 185-214.	1.2	12
43	The April 2010 North African heatwave: when the water vapor greenhouse effect drives nighttime temperatures. Climate Dynamics, 2020, 54, 3879-3905.	1.7	10
44	Processâ€Based Climate Model Development Harnessing Machine Learning: III. The Representation of Cumulus Geometry and Their 3D Radiative Effects. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002423.	1.3	8
45	Accounting for Vertical Subgridâ€Scale Heterogeneity in Lowâ€Level Cloud Fraction Parameterizations. Journal of Advances in Modeling Earth Systems, 2018, 10, 2686-2705.	1.3	7
46	A caseâ€study of the coupled ocean–atmosphere response to an oceanic diurnal warm layer. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2008-2032.	1.0	5
47	LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa. Atmospheric Chemistry and Physics, 2018, 18, 6601-6624.	1.9	4
48	Modeling the GABLS4 Stronglyâ€Stable Boundary Layer With a GCM Turbulence Parameterization: Parametric Sensitivity or Intrinsic Limits?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002269.	1.3	4
49	Processâ€oriented stochastic perturbations applied to the parametrization of turbulence and shallow convection for ensemble prediction. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 981-1000.	1.0	3
50	Sahelian Heat Wave Characterization From Observational Data Sets. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034465.	1.2	2
51	La campagne IHOP 2002 - Une campagne de mesure de la vapeur d'eau dans la couche limite. La Météorologie, 2003, 8, 38.	0.5	2
52	Uncertainty of SW Cloud Radiative Effect in Atmospheric Models Due to the Parameterization of Liquid Cloud Optical Properties. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002742.	1.3	2
53	A new downscaling method for sub-grid turbulence modeling. Atmospheric Chemistry and Physics, 2017, 17, 6531-6546.	1.9	1
54	Use of large-eddy simulations to design an adaptive sampling strategy to assess cumulus cloud heterogeneities by remotely piloted aircraft. Atmospheric Measurement Techniques, 2022, 15, 335-352.	1.2	1