Ramiro S Maldonado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing Hand-held Spectral Domain Optical Coherence Tomography Imaging for Neonates, Infants, and Children. , 2010, 51, 2678.		193
2	Dynamics of Human Foveal Development after Premature Birth. Ophthalmology, 2011, 118, 2315-2325.	2.5	189
3	INTRAOPERATIVE USE OF HANDHELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING IN MACULAR SURGERY. Retina, 2009, 29, 1457-1468.	1.0	165
4	MACULAR FEATURES FROM SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY AS AN ADJUNCT TO INDIRECT OPHTHALMOSCOPY IN RETINOPATHY OF PREMATURITY. Retina, 2011, 31, 1470-1482.	1.0	106
5	Spectral-Domain Optical Coherence Tomographic Assessment of Severity of Cystoid Macular Edema in Retinopathy of Prematurity. JAMA Ophthalmology, 2012, 130, 569-78.	2.6	98
6	Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Current Opinion in Ophthalmology, 2020, 31, 147-154.	1.3	73
7	Acute-onset central serous retinopathy after immunization with COVID-19 mRNA vaccine. American Journal of Ophthalmology Case Reports, 2021, 23, 101136.	0.4	70
8	Choroid Development and Feasibility of Choroidal Imaging in the Preterm and Term Infants Utilizing SD-OCT. , 2013, 54, 4140.		69
9	The Use of Optical Coherence Tomography in Intraoperative Ophthalmic Imaging. Ophthalmic Surgery Lasers and Imaging Retina, 2011, 42, S85-94.	0.4	63
10	Optical Coherence Tomography in Retinopathy of Prematurity. Clinics in Perinatology, 2013, 40, 271-296.	0.8	59
11	Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography. BioMed Research International, 2015, 2015, 1-12.	0.9	49
12	Evaluation of Optic Nerve Development in Preterm and Term Infants Using Handheld Spectral-Domain Optical Coherence Tomography. Ophthalmology, 2014, 121, 1818-1826.	2.5	47
13	Three-Dimensional Assessment of Vascular and Perivascular Characteristics in Subjects with Retinopathy of Prematurity. Ophthalmology, 2014, 121, 1289-1296.	2.5	46
14	Subfoveal Fluid in Healthy Full-term Newborns Observed by Handheld Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2012, 153, 167-175.e3.	1.7	42
15	The application of optical coherence tomography in neurologic diseases. Neurology: Clinical Practice, 2015, 5, 460-469.	0.8	31
16	Reversible retinal edema in an infant with neonatal hemochromatosis and liver failure. Journal of AAPOS, 2011, 15, 91-93.	0.2	24
17	Racial variation in optic nerve head parameters quantified in healthy newborns by handheld spectral domain optical coherence tomography. Journal of AAPOS, 2013, 17, 501-506.	0.2	23
18	TREATMENT OF NON–AGE-RELATED MACULAR DEGENERATION SUBMACULAR DISEASES WITH MACULAR TRANSLOCATION SURGERY, Retina, 2011, 31, 1337-1346	1.0	22

#	Article	IF	CITATIONS
19	Insulin, Hyperglycemia, and Severe Retinopathy of Prematurity in Extremely Low-Birth-Weight Infants. American Journal of Perinatology, 2016, 33, 393-400.	0.6	16
20	Macular Findings in Healthy Full-term Hispanic Newborns Observed by Hand-held Spectral-Domain Optical Coherence Tomography. Ophthalmic Surgery Lasers and Imaging Retina, 2013, 44, 448-454.	0.4	15
21	Expanding the clinical phenotype in patients with disease causing variants associated with atypical Usher syndrome. Ophthalmic Genetics, 2021, 42, 664-673.	0.5	14
22	Phenotypic and Genetic Spectrum of Autosomal Recessive Bestrophinopathy and Best Vitelliform Macular Dystrophy. , 2021, 62, 22.		11
23	Preretinal and Intraretinal Exudates in Familial Exudative Vitreoretinopathy. Retina, 2011, 31, 193-194.	1.0	9
24	Multimodal imaging and genetic findings in a case of ARSG-related atypical Usher syndrome. Ophthalmic Genetics, 2021, 42, 338-343.	0.5	8
25	GLUT1 deficiency. Neurology: Genetics, 2020, 6, e472.	0.9	5
26	Novel missense <i>WFS1</i> variant causing autosomal dominant atypical Wolfram syndrome. Ophthalmic Genetics, 2022, , 1-6.	0.5	3
27	The application of optical coherence tomography in neurologic diseases. Neurology: Clinical Practice, 2016, 6, 9-10.	0.8	2
28	Optical Coherence Tomography and Wide-Field Fluorescein Angiography in Retinopathy of Prematurity. , 2017, , 29-41.		1