Michael S Blouin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Effects of Captive Breeding Cause a Rapid, Cumulative Fitness Decline in the Wild. Science, 2007, 318, 100-103.	6.0	735
2	DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology and Evolution, 2003, 18, 503-511.	4.2	518
3	Fitness of hatcheryâ€reared salmonids in the wild. Evolutionary Applications, 2008, 1, 342-355.	1.5	473
4	Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology, 2002, 32, 527-531.	1.3	372
5	Genetic adaptation to captivity can occur in a single generation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 238-242.	3.3	350
6	Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology, 2005, 14, 2247-2257.	2.0	347
7	Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 2005, 14, 483-496.	2.0	305
8	Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nature Communications, 2017, 8, 15451.	5.8	216
9	Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture, 2003, 220, 227-244.	1.7	206
10	Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biology Letters, 2009, 5, 621-624.	1.0	199
11	A single generation of domestication heritably alters the expression of hundreds of genes. Nature Communications, 2016, 7, 10676.	5.8	191
12	Population Biology of Parasitic Nematodes: Applications of Genetic Markers. Advances in Parasitology, 1998, 41, 219-283.	1.4	185
13	On the reproductive success of earlyâ€generation hatchery fish in the wild. Evolutionary Applications, 2014, 7, 883-896.	1.5	172
14	LIFE CYCLES SHAPE PARASITE EVOLUTION: COMPARATIVE POPULATION GENETICS OF SALMON TREMATODES. Evolution; International Journal of Organic Evolution, 2004, 58, 198-202.	1.1	163
15	A review of colour and pattern polymorphisms in anurans. Biological Journal of the Linnean Society, 2000, 70, 633-665.	0.7	162
16	Reproductive Success of Captive-Bred Steelhead Trout in the Wild: Evaluation of Three Hatchery Programs in the Hood River. Conservation Biology, 2007, 21, 181-190.	2.4	152
17	Inbreeding avoidance behaviors. Trends in Ecology and Evolution, 1988, 3, 230-233.	4.2	134
18	Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 2007, 16, 953-966.	2.0	125

MICHAEL S BLOUIN

#	Article	IF	CITATIONS
19	Life cycle variation and the genetic structure of nematode populations. Heredity, 1999, 83, 253-259.	1.2	104
20	Genetic structure in a montane ranid frog: restricted gene flow and nuclear–mitochondrial discordance. Molecular Ecology, 2003, 12, 3275-3286.	2.0	102
21	Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biology, 2007, 52, 1881-1897.	1.2	93
22	Reduced reproductive success of hatchery coho salmon in the wild: insights into most likely mechanisms. Molecular Ecology, 2011, 20, 1860-1869.	2.0	91
23	Effective sizes of macroparasite populations: a conceptual model. Trends in Parasitology, 2005, 21, 212-217.	1.5	88
24	Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Developmental and Comparative Immunology, 2009, 33, 1247-1257.	1.0	86
25	EVOLUTIONARY HISTORY OF THE NORTHERN LEOPARD FROG: RECONSTRUCTION OF PHYLOGENY, PHYLOGEOGRAPHY, AND HISTORICAL CHANGES IN POPULATION DEMOGRAPHY FROM MITOCHONDRIAL DNA. Evolution; International Journal of Organic Evolution, 2004, 58, 145-159.	1.1	81
26	PARASITE GENOTYPES IDENTIFY SOURCE POPULATIONS OF MIGRATORY FISH MORE ACCURATELY THAN FISH GENOTYPES. Ecology, 2006, 87, 823-828.	1.5	81
27	Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites. PLoS Genetics, 2015, 11, e1005067.	1.5	72
28	Haemonchus placei and Haemonchus contortus are distinct species based on mtDNA evidence. International Journal for Parasitology, 1997, 27, 1383-1387.	1.3	70
29	Who are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population. Molecular Ecology, 2011, 20, 1263-1276.	2.0	64
30	Bayesian parentage analysis with systematic accountability of genotyping error, missing data and false matching. Bioinformatics, 2013, 29, 725-732.	1.8	64
31	Variation in expression of Biomphalaria glabrata SOD1: A potential controlling factor in susceptibility/resistance to Schistosoma mansoni. Developmental and Comparative Immunology, 2007, 31, 874-878.	1.0	57
32	An analysis of selection on a colour polymorphism in the northern leopard frog. Molecular Ecology, 2006, 15, 2627-2641.	2.0	55
33	Selection for Antimicrobial Peptide Diversity in Frogs Leads to Gene Duplication and Low Allelic Variation. Journal of Molecular Evolution, 2007, 65, 605-615.	0.8	54
34	Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4441-4446.	3.3	54
35	COMPARATIVE ANALYSES OF EFFECTIVE POPULATION SIZE WITHIN AND AMONG SPECIES: RANID FROGS AS A CASE STUDY. Evolution; International Journal of Organic Evolution, 2011, 65, 2927-2945.	1.1	52
36	Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia, 2000, 125, 358-361.	0.9	50

#	Article	IF	CITATIONS
37	MINIMAL SELFING, FEW CLONES, AND NO AMONGâ€HOST GENETIC STRUCTURE IN A HERMAPHRODITIC PARASITE WITH ASEXUAL LARVAL PROPAGATION. Evolution; International Journal of Organic Evolution, 2006, 60, 553-562.	1.1	50
38	Applying evolutionary genetics to schistosome epidemiology. Infection, Genetics and Evolution, 2010, 10, 433-443.	1.0	46
39	Extreme isolation by distance in a montane frog Rana cascadae. Conservation Genetics, 2004, 5, 827-835.	0.8	45
40	Schistosome infectivity in the snail, Biomphalaria glabrata, is partially dependent on the expression of Grctm6, a Guadeloupe Resistance Complex protein PLoS Neglected Tropical Diseases, 2017, 11, e0005362.	1.3	43
41	Parasite phylogeographical congruence with salmon host evolutionarily significant units: implications for salmon conservation. Molecular Ecology, 2006, 16, 993-1005.	2.0	42
42	Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata. PLoS Neglected Tropical Diseases, 2012, 6, e1701.	1.3	42
43	Is there a best shape for nature reserves?. Biological Conservation, 1985, 32, 277-288.	1.9	41
44	Historical data refute recent range contraction as cause of low genetic diversity in isolated frog populations. Molecular Ecology, 2004, 13, 271-276.	2.0	40
45	Unbiased estimation of relative reproductive success of different groups: evaluation and correction of bias caused by parentage assignment errors. Molecular Ecology, 2005, 14, 4097-4109.	2.0	40
46	Balancing Selection at a Frog Antimicrobial Peptide Locus: Fluctuating Immune Effector Alleles?. Molecular Biology and Evolution, 2008, 25, 2669-2680.	3.5	40
47	More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Molecular Ecology, 2011, 20, 2510-2524.	2.0	39
48	No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 217-224.	0.7	37
49	Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2015, 9, e0004077.	1.3	32
50	Comparing bivariate reaction norms among species: time and size at metamorphosis in three species of Hyla (Anura: Hylidae). Oecologia, 1992, 90, 288-293.	0.9	31
51	Effects of Environmentally Induced Development-Rate Variation on Head and Limb Morphology in the Green Tree Frog, Hyla cinerea. American Naturalist, 1991, 138, 717-728.	1.0	30
52	Population structure and conservation genetics of the Oregon spotted frog, Rana pretiosa. Conservation Genetics, 2010, 11, 2179-2194.	0.8	28
53	Allelic Variation in a Single Genomic Region Alters the Microbiome of the Snail Biomphalaria glabrata. Journal of Heredity, 2018, 109, 604-609.	1.0	26
54	Three genes involved in the oxidative burst are closely linked in the genome of the snail, Biomphalaria glabrata. International Journal for Parasitology, 2013, 43, 51-55.	1.3	24

MICHAEL S BLOUIN

#	Article	IF	CITATIONS
55	Genotypic variation in host response to infection affects parasite reproductive rate. International Journal for Parasitology, 2016, 46, 123-131.	1.3	22
56	Identification of Symbiotic Bacteria (Photorhabdus and Xenorhabdus) from the Entomopathogenic Nematodes Heterorhabditis marelatus and Steinernema oregonense Based on 16S rDNA Sequence. Journal of Invertebrate Pathology, 2001, 77, 87-91.	1.5	20
57	Non-Invasive Sampling of Schistosomes from Humans Requires Correcting for Family Structure. PLoS Neglected Tropical Diseases, 2013, 7, e2456.	1.3	18
58	Sequencing and characterization of the anadromous steelhead (Oncorhynchus mykiss) transcriptome. Marine Genomics, 2014, 15, 13-15.	0.4	18
59	A Targeted Capture Linkage Map Anchors the Genome of the Schistosomiasis Vector Snail, <i>Biomphalaria glabrata</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2353-2361.	0.8	18
60	Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors. ELife, 2020, 9, .	2.8	18
61	A potential bias in the temporal method for estimating Nein admixed populations under natural selection. Molecular Ecology, 2007, 16, 2261-2271.	2.0	15
62	How Much Does Inbreeding Contribute to the Reduced Fitness of Hatchery-Born Steelhead (Oncorhynchus mykiss) in the Wild?. Journal of Heredity, 2014, 105, 111-119.	1.0	15
63	The effects of high rearing density on the potential for domestication selection in hatchery culture of steelhead (<i>Oncorhynchus mykiss</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1829-1834.	0.7	15
64	Genetic variation in two populations of the rough-skinned newt (Taricha granulosa) assessed using novel tetranucleotide microsatellite loci. Molecular Ecology Notes, 2001, 1, 293-296.	1.7	14
65	Evolution of Palatability Differences between Closely-Related Treefrogs. Journal of Herpetology, 1990, 24, 309.	0.2	13
66	Effective number of breeding adults in Oregon spotted frogs (Rana pretiosa): genetic estimates at two life stages. Conservation Genetics, 2010, 11, 737-745.	0.8	13
67	Clearance of schistosome parasites by resistant genotypes at a single genomic region in Biomphalaria glabrata snails involves cellular components of the hemolymph. International Journal for Parasitology, 2018, 48, 387-393.	1.3	13
68	Allelic variation partially regulates galactose-dependent hydrogen peroxide release from circulating hemocytes of the snail Biomphalaria glabrata. Fish and Shellfish Immunology, 2018, 72, 111-116.	1.6	11
69	Allelic variation in a single genomic region alters the hemolymph proteome in the snail Biomphalaria glabrata. Fish and Shellfish Immunology, 2019, 88, 301-307.	1.6	11
70	Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon. PLoS ONE, 2021, 16, e0257407.	1.1	11
71	Proximate developmental causes of limb length variation betweenHyla cinerea andHyla gratiosa (Anura: Hylidae). Journal of Morphology, 1991, 209, 305-310.	0.6	8

Sexâ€biased survivorship and differences in migration of wild steelhead (<i><scp>O</scp>ncorhynchus) Tj ETQq0 0.0 rgBT /Qverlock 10

MICHAEL S BLOUIN

#	Article	IF	CITATIONS
73	Eleven polymorphic microsatellite loci for the salmonid trematode Plagioporus shawi. Molecular Ecology Notes, 2005, 5, 562-564.	1.7	7
74	Sex reversal, selection against hatchery females or wild males does not explain differences in sex ratio between first generation hatchery and wild steelhead, Oncorhynchus mykiss. Environmental Biology of Fishes, 2015, 98, 113-120.	0.4	7
75	Family influence on length at release and size-biased survival post release in hatchery-reared steelhead: A mechanism to explain how genetic adaptation to captivity occurs. Aquaculture, 2018, 491, 135-146.	1.7	7
76	The behavioral effects of antibiotic treatment on the snail <i>Biomphalaria glabrata</i> . PeerJ, 2017, 5, e4171.	0.9	6
77	Neither heat pulse, nor multigenerational exposure to a modest increase in water temperature, alters the susceptibility of Guadeloupean <i>Biomphalaria glabrata</i> to <i>Schistosoma mansoni</i> infection. PeerJ, 2020, 8, e9059.	0.9	6
78	Spawn date explains variation in growth rate among families of hatchery reared Hood River steelhead (Oncorhynchus mykiss). Environmental Biology of Fishes, 2016, 99, 581-591.	0.4	4
79	Inheritance of a Naturally Occurring Color Polymorphism in the Ornate Chorus Frog, Pseudacris ornata. Copeia, 1989, 1989, 1056.	1.4	3
80	A revised leopard frog phylogeny allows a more detailed examination of adaptive evolution at ranatuerin-2 antimicrobial peptide loci. Immunogenetics, 2010, 62, 333-343.	1.2	3
81	Heat shock increases hydrogen peroxide release from circulating hemocytes of the snail Biomphalaria glabrata. Fish and Shellfish Immunology, 2020, 105, 203-208.	1.6	3
82	Effects of temperature on sexual development in steelhead, Oncorhynchus mykiss. Environmental Biology of Fishes, 2021, 104, 229-238.	0.4	3
83	MINIMAL SELFING, FEW CLONES, AND NO AMONG-HOST GENETIC STRUCTURE IN A HERMAPHRODITIC PARASITE WITH ASEXUAL LARVAL PROPAGATION. Evolution; International Journal of Organic Evolution, 2006, 60, 553.	1.1	2
84	Who are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population. , 2011, 20, 1263.		1