Nieves Lpez-Salas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6433681/nieves-lopez-salas-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27 542 12 23 g-index

32 698 9.8 4.05 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
27	PtRu nanoparticles supported on noble carbons for ethanol electrooxidation. <i>Journal of Energy Chemistry</i> , 2022 , 66, 168-180	12	5
26	"We Are Here!" Oxygen Functional Groups in Carbons for Electrochemical Applications <i>ACS Omega</i> , 2022 , 7, 11544-11554	3.9	5
25	Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid. <i>Nano Energy</i> , 2022 , 97, 107191	17.1	5
24	Laser-carbonization: Peering into the formation of micro-thermally produced (N-doped)carbons. <i>Carbon</i> , 2021 , 176, 500-510	10.4	7
23	Caffeine-Derived Noble Carbons as Ball Milling-Resistant Cathode Materials for Lithium-Ion Capacitors. <i>ACS Applied Materials & Acs Applied </i>	9.5	1
22	Guanine condensates as covalent materials and the concept of cryptopores. <i>Carbon</i> , 2021 , 172, 497-505	5 10.4	8
21	Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. Journal of Colloid and Interface Science, 2021, 602, 880-888	9.3	2
20	Rediscovering Forgotten Members of the Graphene Family. <i>Accounts of Materials Research</i> , 2020 , 1, 117	'- ' 1. 3 2	7
19	Thin films of poly(vinylidene fluoride-co-hexafluoropropylene)-ionic liquid mixtures as amperometric gas sensing materials for oxygen and ammonia. <i>Analyst, The</i> , 2020 , 145, 1915-1924	5	9
18	Guanine-Derived Porous Carbonaceous Materials: Towards C N. <i>ChemSusChem</i> , 2020 , 13, 6643-6650	8.3	9
17	CN: A Class of Covalent Frameworks with Unique Properties. <i>Advanced Science</i> , 2020 , 7, 2001767	13.6	18
16	Looking at the Water-in-Deep-Eutectic-Solvent system: A Dilution Range for High Performance Eutectics. ACS Sustainable Chemistry and Engineering, 2019, 7, 17565-17573	8.3	49
15	Deep eutectic solvents as active media for the preparation of highly conducting 3D free-standing PANI xerogels and their derived N-doped and N-, P-codoped porous carbons. <i>Carbon</i> , 2019 , 146, 813-82	6 ^{10.4}	8
14	Adjusting the Structure and Electronic Properties of Carbons for Metal-Free Carbocatalysis of Organic Transformations. <i>Advanced Materials</i> , 2019 , 31, e1805719	24	40
13	Encoding Metal-Cation Arrangements in Metal-Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1766-1774	16.4	22
12	Hydrogen-bond supramolecular hydrogels as efficient precursors in the preparation of freestanding 3D carbonaceous architectures containing BCNO nanocrystals and exhibiting a high CO2/CH4 adsorption ratio. <i>Carbon</i> , 2018 , 134, 470-479	10.4	12
11	Reline aqueous solutions behaving as liquid mixtures of H-bonded co-solvents: microphase segregation and formation of co-continuous structures as indicated by Brillouin and H NMR spectroscopies. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17103-17110	3.6	43

LIST OF PUBLICATIONS

10	Predicting the suitability of aqueous solutions of deep eutectic solvents for preparation of co-continuous porous carbons via spinodal decomposition processes. <i>Carbon</i> , 2017 , 123, 536-547	10.4	27	
9	Phosphorus-doped carbonDarbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1251-1263	13	119	
8	Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 478-488	13	32	
7	Tailoring the textural properties of hierarchical porous carbons using deep eutectic solvents. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9146-9159	13	32	
6	Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17387-1739	99 ¹³	35	
5	Use of eutectic mixtures for preparation of monolithic carbons with COE dsorption and gas-separation capabilities. <i>Langmuir</i> , 2014 , 30, 12220-8	4	19	
4	Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts. <i>ChemSusChem</i> , 2014 , 7, 3347-55	8.3	15	
3	Cull/Cul decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> ,	13	2	
2	Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline Carbon Nitride-Based Materials. <i>Advanced Sustainable Systems</i> ,2100429	5.9	5	
1	Carbonaceous Materials: The beauty of simplicity. Bulletin of the Chemical Society of Japan,	5.1	3	