Ard a louis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotype Bias Determines How Natural RNA Structures Occupy the Morphospace of All Possible Shapes. Molecular Biology and Evolution, 2022, 39, .	8.9	32
2	The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Research, 2022, 50, 2480-2492.	14.5	6
3	Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proceedings of the United States of America, 2022, 119, e2113883119.	7.1	50
4	The long and winding road to understanding organismal construction. Physics of Life Reviews, 2022, 42, 19-24.	2.8	0
5	Free energy landscapes of DNA and its assemblies: perspectives from coarse-grained modelling. Frontiers of Nanoscience, 2022, , 195-210.	0.6	0
6	Reply to Ocklenburg and Mundorf: The interplay of developmental bias and natural selection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
7	From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Physics of Life Reviews, 2021, 38, 55-106.	2.8	49
8	Measuring Internal Forces in Single-Stranded DNA: Application to a DNA Force Clamp. Journal of Chemical Theory and Computation, 2020, 16, 7764-7775.	5.3	10
9	Reconfigurable Tâ€junction DNA Origami. Angewandte Chemie, 2020, 132, 16076-16080.	2.0	0
10	Reconfigurable Tâ€ j unction DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 15942-15946.	13.8	1
11	Generic predictions of output probability based on complexities of inputs and outputs. Scientific Reports, 2020, 10, 4415.	3.3	12
12	Boolean Threshold Networks as Models of Genotype-Phenotype Maps. Springer Proceedings in Complexity, 2020, , 143-155.	0.3	8
13	Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nature Communications, 2020, 11, 2562.	12.8	66
14	TacoxDNA: A userâ€friendly web server for simulations of complex DNA structures, from single strands to origami. Journal of Computational Chemistry, 2019, 40, 2586-2595.	3.3	54
15	Identifying Physical Causes of Apparent Enhanced Cyclization of Short DNA Molecules with a Coarse-Grained Model. Journal of Chemical Theory and Computation, 2019, 15, 4660-4672.	5.3	22
16	Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Research, 2019, 47, 1585-1597.	14.5	75
17	Input–output maps are strongly biased towards simple outputs. Nature Communications, 2018, 9, 761.	12.8	43
18	Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly. Journal of Chemical Physics, 2018, 148, 134910.	3.0	18

#	Article	IF	CITATIONS
19	Force-Induced Unravelling of DNA Origami. ACS Nano, 2018, 12, 6734-6747.	14.6	55
20	A touch of awe: crafting meaning from the wonder of the cosmos. Annals of the New York Academy of Sciences, 2018, 1432, 46-62.	3.8	0
21	Coarse-Grained Modeling of RNA for Biology and Nanotechnology. Biophysical Journal, 2017, 112, 369a.	0.5	1
22	Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. ACS Nano, 2017, 11, 12426-12435.	14.6	51
23	Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability. PLoS Computational Biology, 2016, 12, e1004773.	3.2	61
24	Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model. ACS Nano, 2016, 10, 4236-4247.	14.6	35
25	Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation. Nucleic Acids Research, 2016, 44, gkw815.	14.5	54
26	Precision control of DNA-based molecular reactions. , 2016, , .		0
27	Direct Simulation of the Self-Assembly of a Small DNA Origami. ACS Nano, 2016, 10, 1724-1737.	14.6	86
28	Contingency, convergence and hyper-astronomical numbers in biological evolution. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, 58, 107-116.	1.3	25
29	Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. Journal of Chemical Physics, 2015, 142, 234901.	3.0	267
30	Coarse-grained modelling of supercoiled RNA. Journal of Chemical Physics, 2015, 143, 243122.	3.0	13
31	Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA. Scientific Reports, 2015, 5, 7655.	3.3	84
32	DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Research, 2015, 43, 6181-6190.	14.5	54
33	The structure of the genotype–phenotype map strongly constrains the evolution of non-coding RNA. Interface Focus, 2015, 5, 20150053.	3.0	58
34	Modelling Toehold-Mediated RNA Strand Displacement. Biophysical Journal, 2015, 108, 1238-1247.	0.5	54
35	Characterizing the bending and flexibility induced by bulges in DNA duplexes. Journal of Chemical Physics, 2015, 142, 165101.	3.0	16
36	Taylor dispersion of colloidal particles in narrow channels. Molecular Physics, 2015, 113, 2538-2545.	1.7	6

#	Article	IF	CITATIONS
37	Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors. ACS Nano, 2015, 9, 11993-12003.	14.6	86
38	A tractable genotype–phenotype map modelling the self-assembly of protein quaternary structure. Journal of the Royal Society Interface, 2014, 11, 20140249.	3.4	62
39	The Role of Loop Stacking in the Dynamics of DNA Hairpin Formation. Journal of Physical Chemistry B, 2014, 118, 14326-14335.	2.6	27
40	Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks. Physica A: Statistical Mechanics and Its Applications, 2014, 404, 341-358.	2.6	51
41	Simulating a burnt-bridges DNA motor with a coarse-grained DNA model. Natural Computing, 2014, 13, 535-547.	3.0	30
42	A nucleotide-level coarse-grained model of RNA. Journal of Chemical Physics, 2014, 140, 235102.	3.0	117
43	Coarse-Grained Modelling of Extreme DNA Bending. Biophysical Journal, 2014, 106, 66a.	0.5	2
44	The Arrival of the Frequent: How Bias in Genotype-Phenotype Maps Can Steer Populations to Local Optima. PLoS ONE, 2014, 9, e86635.	2.5	78
45	Viscous fingering at ultralow interfacial tension. Soft Matter, 2013, 9, 10599.	2.7	24
46	Coarse-graining DNA for simulations of DNA nanotechnology. Physical Chemistry Chemical Physics, 2013, 15, 20395.	2.8	173
47	DNA hybridization kinetics: zippering, internal displacement and sequence dependence. Nucleic Acids Research, 2013, 41, 8886-8895.	14.5	203
48	Optimizing DNA Nanotechnology through Coarse-Grained Modeling: A Two-Footed DNA Walker. ACS Nano, 2013, 7, 2479-2490.	14.6	88
49	Zigzag transitions and nonequilibrium pattern formation in colloidal chains. Journal of Chemical Physics, 2013, 139, 134908.	3.0	22
50	On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research, 2013, 41, 10641-10658.	14.5	423
51	Dynamics of solutes with hydrodynamic interactions: Comparison between Brownian dynamics and stochastic rotation dynamics simulations. Physical Review E, 2013, 88, 043304.	2.1	22
52	Coarse-grained simulations of DNA overstretching. Journal of Chemical Physics, 2013, 138, 085101.	3.0	66
53	Epistasis can lead to fragmented neutral spaces and contingency in evolution. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1777-1783.	2.6	36
54	The effect of topology on the structure and free energy landscape of DNA kissing complexes. Journal of Chemical Physics, 2012, 136, 215102.	3.0	28

#	Article	IF	CITATIONS
55	Sequence-dependent thermodynamics of a coarse-grained DNA model. Journal of Chemical Physics, 2012, 137, 135101.	3.0	265
56	Effect of Bending Rigidity on the Knotting of a Polymer under Tension. ACS Macro Letters, 2012, 1, 1352-1356.	4.8	36
57	DNA Cruciform Arms Nucleate through a Correlated but Asynchronous Cooperative Mechanism. Journal of Physical Chemistry B, 2012, 116, 11616-11625.	2.6	36
58	How Péclet number affects microstructure and transient cluster aggregation in sedimenting colloidal suspensions. Journal of Chemical Physics, 2012, 136, 064517.	3.0	9
59	Formation of dodecagonal quasicrystals in two-dimensional systems of patchy particles. Journal of Chemical Physics, 2012, 136, 054904.	3.0	52
60	Templated self-assembly of patchy particles. Soft Matter, 2011, 7, 3423.	2.7	44
61	Extracting short-ranged interactions from structure factors. Molecular Physics, 2011, 109, 2945-2951.	1.7	5
62	Re-entrant phase behavior for systems with competition between phase separation and self-assembly. Journal of Chemical Physics, 2011, 134, 104905.	3.0	34
63	Confinement of knotted polymers in a slit. Molecular Physics, 2011, 109, 1289-1295.	1.7	20
64	Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. Journal of Chemical Physics, 2011, 134, 085101.	3.0	379
65	Evolutionary dynamics in a simple model of self-assembly. Physical Review E, 2011, 83, 066105.	2.1	42
66	Pattern formation in colloidal explosions. Europhysics Letters, 2011, 94, 48008.	2.0	21
67	Is Water an Amniotic Eden or a Corrosive Hell? Emerging Perspectives on the Strangest Fluid in the Universe. , 2010, , 3-9.		0
68	DNA Nanotweezers Studied with a Coarse-Grained Model of DNA. Physical Review Letters, 2010, 104, 178101.	7.8	162
69	The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks. Journal of Theoretical Biology, 2010, 267, 48-61.	1.7	32
70	The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry. Journal of Chemical Physics, 2010, 132, 234511.	3.0	93
71	Complex dynamics of knotted filaments in shear flow. Europhysics Letters, 2010, 92, 34003.	2.0	11
72	Effect of topology on dynamics of knots in polymers under tension. Europhysics Letters, 2010, 89, 20001.	2.0	34

#	Article	IF	CITATIONS
73	Extracting bulk properties of self-assembling systems from small simulations. Journal of Physics Condensed Matter, 2010, 22, 104102.	1.8	47
74	Modelling the self-assembly of virus capsids. Journal of Physics Condensed Matter, 2010, 22, 104101.	1.8	71
75	Effects of Interparticle Attractions on Colloidal Sedimentation. Physical Review Letters, 2010, 104, 068301.	7.8	40
76	Self-assembly, modularity, and physical complexity. Physical Review E, 2010, 82, 026117.	2.1	46
77	The crossover from single file to Fickian diffusion. Faraday Discussions, 2010, 144, 285-299.	3.2	28
78	Hydrodynamics of confined colloidal fluids in two dimensions. Physical Review E, 2009, 79, 051402.	2.1	14
79	Knot-Controlled Ejection of a Polymer from a Virus Capsid. Physical Review Letters, 2009, 102, 088101.	7.8	72
80	The self-assembly of DNA Holliday junctions studied with a minimal model. Journal of Chemical Physics, 2009, 130, 065101.	3.0	36
81	Self-assembly of monodisperse clusters: Dependence on target geometry. Journal of Chemical Physics, 2009, 131, 175101.	3.0	54
82	Monodisperse self-assembly in a model with protein-like interactions. Journal of Chemical Physics, 2009, 131, 175102.	3.0	61
83	Self-Assembly and Evolution of Homomeric Protein Complexes. Physical Review Letters, 2009, 102, 118106.	7.8	68
84	Density profiles and solvation forces for a Yukawa fluid in a slit pore. Journal of Chemical Physics, 2008, 128, 204704.	3.0	38
85	Interplay between hydrodynamic and Brownian fluctuations in sedimenting colloidal suspensions. Physical Review E, 2008, 77, 011402.	2.1	57
86	Phase diagram of model anisotropic particles with octahedral symmetry. Journal of Chemical Physics, 2007, 127, 054501.	3.0	80
87	Representability problems for coarse-grained water potentials. Journal of Chemical Physics, 2007, 126, 144509.	3.0	198
88	Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. Journal of Chemical Physics, 2007, 127, 085106.	3.0	176
89	Controlling crystallization and its absence: proteins, colloids and patchy models. Physical Chemistry Chemical Physics, 2007, 9, 2197.	2.8	179
90	Measuring colloidal interactions with confocal microscopy. Journal of Chemical Physics, 2007, 127, 044507.	3.0	73

#	Article	IF	CITATIONS
91	Phase Separation of a Model Binary Polymer Solution in an External Fieldâ€. Journal of Physical Chemistry B, 2006, 110, 3661-3665.	2.6	6
92	Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E, 2006, 74, 031402.	2.1	353
93	From Concentration Profiles to Polymer Osmotic Equations of State. ChemPhysChem, 2005, 6, 1760-1764.	2.1	10
94	Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom–Rowlinson model. Molecular Physics, 2005, 103, 3045-3054.	1.7	34
95	Stick boundary conditions and rotational velocity auto-correlation functions for colloidal particles in a coarse-grained representation of the solvent. Journal of Physics Condensed Matter, 2005, 17, S3393-S3399.	1.8	46
96	Density-Functional Study of Interfacial Properties of Colloidâ^'Polymer Mixturesâ€. Journal of Physical Chemistry B, 2005, 109, 6640-6649.	2.6	15
97	Polymer solutions: from hard monomers to soft polymers. Journal of Physics Condensed Matter, 2005, 17, S3185-S3193.	1.8	17
98	Phase separation of a multiple occupancy lattice gas. Journal of Physics A, 2004, 37, 577-590.	1.6	18
99	Dynamic Colloidal Stabilization by Nanoparticle Halos. Physical Review Letters, 2004, 93, 248303.	7.8	55
100	Influence of solvent quality on polymer solutions: A Monte Carlo study of bulk and interfacial properties. Journal of Chemical Physics, 2004, 121, 612.	3.0	17
101	Inhibition of protein crystallization by evolutionary negative design. Physical Biology, 2004, 1, P9-P13.	1.8	77
102	Invited article: Thermodynamic perturbation theory of the phase behaviour of colloid/interacting polymer mixtures. Molecular Physics, 2004, 102, 1-11.	1.7	37
103	Hydrodynamic and Brownian Fluctuations in Sedimenting Suspensions. Physical Review Letters, 2004, 93, 220601.	7.8	142
104	Phase Separation of Penetrable Core Mixtures. Journal of Statistical Physics, 2003, 110, 1015-1037.	1.2	21
105	Effect of polymer–polymer interactions on the surface tension of colloid–polymer mixtures. Journal of Chemical Physics, 2003, 119, 12667-12672.	3.0	17
106	Influence of solvent quality on effective pair potentials between polymers in solution. Physical Review E, 2003, 67, 041801.	2.1	54
107	Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions. Physical Review E, 2003, 67, 051404.	2.1	49
108	Colloid-Polymer Mixtures in the Protein Limit. Physical Review Letters, 2003, 90, 068304.	7.8	127

#	Article	IF	CITATIONS
109	The Asakura–Oosawa model in the protein limit: the role of many-body interactions. Journal of Physics Condensed Matter, 2003, 15, S3429-S3442.	1.8	38
110	Polymer induced depletion potentials in polymer-colloid mixtures. Journal of Chemical Physics, 2002, 117, 1893-1907.	3.0	132
111	Exotic fluids and crystals of soft polymeric colloids. Journal of Physics Condensed Matter, 2002, 14, 7681-7698.	1.8	60
112	Discrete charge patterns, Coulomb correlations and interactions in protein solutions. Europhysics Letters, 2002, 57, 731-737.	2.0	42
113	How To Derive and Parameterize Effective Potentials in Colloidâ^'Polymer Mixtures. Macromolecules, 2002, 35, 1860-1869.	4.8	90
114	Influence of Polymer-Excluded Volume on the Phase-Behavior of Colloid-Polymer Mixtures. Physical Review Letters, 2002, 89, 128302.	7.8	182
115	Beware of density dependent pair potentials. Journal of Physics Condensed Matter, 2002, 14, 9187-9206.	1.8	259
116	Density profiles and surface tension of polymers near colloidal surfaces. Journal of Chemical Physics, 2002, 116, 10547-10556.	3.0	70
117	Effective forces in colloidal mixtures: From depletion attraction to accumulation repulsion. Physical Review E, 2002, 65, 061407.	2.1	125
118	Relating monomer to centre-of-mass distribution functions in polymer solutions. Europhysics Letters, 2002, 58, 53-59.	2.0	45
119	Combining quantum and classical density functional theory for ion–electron mixtures. Journal of Non-Crystalline Solids, 2002, 312-314, 60-68.	3.1	8
120	Coarse-graining polymers as soft colloids. Physica A: Statistical Mechanics and Its Applications, 2002, 306, 251-261.	2.6	31
121	Effective potentials for polymers and colloids: beyond the van der Waals picture of fluids?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2001, 359, 939-960.	3.4	85
122	Generalized depletion potentials. Journal of Physics Condensed Matter, 2001, 13, L777-L784.	1.8	32
123	Accurate effective pair potentials for polymer solutions. Journal of Chemical Physics, 2001, 114, 4296-4311.	3.0	308
124	Theory of asymmetric nonadditive binary hard-sphere mixtures. Physical Review E, 2001, 64, 051202.	2.1	81
125	Many-body interactions and correlations in coarse-grained descriptions of polymer solutions. Physical Review E, 2001, 64, 021801.	2.1	73
126	Mean-field fluid behavior of the Gaussian core model. Physical Review E, 2000, 62, 7961-7972.	2.1	241

#	Article	IF	CITATIONS
127	Fluid-Solid Phase Separation in Hard-Sphere Mixtures is Unrelated to Bond Percolation. Physical Review Letters, 2000, 84, 1840-1840.	7.8	4
128	Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation. Physical Review B, 2000, 61, 11400-11410.	3.2	34
129	Can Polymer Coils Be Modeled as "Soft Colloids�. Physical Review Letters, 2000, 85, 2522-2525.	7.8	374
130	Crystallization and phase separation in nonadditive binary hard-sphere mixtures. Physical Review E, 2000, 61, R1028-R1031.	2.1	48
131	The structure of colloid-polymer mixtures. Europhysics Letters, 1999, 46, 741-747.	2.0	35
132	Electron–ion structure factors and the general accuracy of linear response. Journal of Non-Crystalline Solids, 1999, 250-252, 9-14.	3.1	5
133	Metallization of fluid hydrogen. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 119-138.	3.4	44
134	Extending Linear Response: Inferences from Electron-Ion Structure Factors. Physical Review Letters, 1998, 81, 4456-4459.	7.8	24
135	Atomic Tunneling from a Scanning-Tunneling or Atomic-Force Microscope Tip: Dissipative Quantum Effects from Phonons. Physical Review Letters, 1995, 74, 1363-1366.	7.8	39
136	Phase separation in binary hard-core mixtures: An exact result. Physical Review Letters, 1992, 68, 3363-3365.	7.8	108
137	Preliminary Evaluation of a Kinetic Parameter Estimator with Application to Direct Parametric Reconstruction. , 0, , .		3