Gail Schofield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translating Marine Animal Tracking Data into Conservation Policy and Management. Trends in Ecology and Evolution, 2019, 34, 459-473.	8.7	256
2	Global sea turtle conservation successes. Science Advances, 2017, 3, e1600730.	10.3	236
3	BIODIVERSITY RESEARCH: Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles. Diversity and Distributions, 2010, 16, 840-853.	4.1	175
4	Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles. Journal of the Royal Society Interface, 2010, 7, 1319-1327.	3.4	165
5	Breeding Periodicity for Male Sea Turtles, Operational Sex Ratios, and Implications in the Face of Climate Change. Conservation Biology, 2010, 24, 1636-1643.	4.7	155
6	Novel GPS tracking of sea turtles as a tool for conservation management. Journal of Experimental Marine Biology and Ecology, 2007, 347, 58-68.	1.5	131
7	Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Diversity and Distributions, 2013, 19, 834-844.	4.1	130
8	Microhabitat selection by sea turtles in a dynamic thermal marine environment. Journal of Animal Ecology, 2009, 78, 14-21.	2.8	122
9	Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162576.	2.6	119
10	Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine Science, 2014, 1, .	2.5	114
11	Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Functional Ecology, 2017, 31, 2310-2319.	3.6	114
12	Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biological Conservation, 2013, 161, 101-109.	4.1	113
13	Inter-annual variability in the home range of breeding turtles: Implications for current and future conservation management. Biological Conservation, 2010, 143, 722-730.	4.1	110
14	Investigating the viability of photo-identification as an objective tool to study endangered sea turtle populations. Journal of Experimental Marine Biology and Ecology, 2008, 360, 103-108.	1.5	103
15	Protected species use of a coastal marine migratory corridor connecting marine protected areas. Marine Biology, 2014, 161, 1455-1466.	1.5	100
16	Acceleration data reveal the energy management strategy of a marine ectotherm during reproduction. Functional Ecology, 2012, 26, 324-333.	3.6	78
17	Operational Protocols for the Use of Drones in Marine Animal Research. Drones, 2020, 4, 64.	4.9	78
18	Route optimisation and solving <scp>Z</scp> ermelo's navigation problem during long distance migration in cross flows. Ecology Letters, 2014, 17, 137-143.	6.4	72

GAIL SCHOFIELD

#	Article	IF	CITATIONS
19	Drones for research on sea turtles and other marine vertebrates – A review. Biological Conservation, 2019, 238, 108214.	4.1	69
20	Females first? Past, present and future variability in offspring sex ratio at a temperate sea turtle breeding area. Animal Conservation, 2012, 15, 508-518.	2.9	62
21	Conservation hotspots: implications of intense spatial area use by breeding male and female loggerheads at the Mediterranean's largest rookery. Endangered Species Research, 2009, 10, 191-202.	2.4	54
22	Employing sea-level rise scenarios to strategically select sea turtle nesting habitat important for long-term management at a temperate breeding area. Journal of Experimental Marine Biology and Ecology, 2014, 450, 47-54.	1.5	53
23	Using climatic suitability thresholds to identify past, present and future population viability. Ecological Indicators, 2016, 71, 551-556.	6.3	48
24	Evidence-based management to regulate the impact of tourism at a key marine turtle rookery on Zakynthos Island, Greece. Oryx, 2013, 47, 584-594.	1.0	42
25	A global gap analysis of sea turtle protection coverage. Biological Conservation, 2014, 173, 17-23.	4.1	40
26	A Review of Patterns of Multiple Paternity Across Sea Turtle Rookeries. Advances in Marine Biology, 2018, 79, 1-31.	1.4	40
27	Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat. Remote Sensing in Ecology and Conservation, 2021, 7, 341-354.	4.3	36
28	Longâ€ŧerm photoâ€ɨd and satellite tracking reveal sexâ€biased survival linked to movements in an endangered species. Ecology, 2020, 101, e03027.	3.2	34
29	Female–female aggression: structure of interaction and outcome in loggerhead sea turtles. Marine Ecology - Progress Series, 2007, 336, 267-274.	1.9	33
30	Complex movement patterns by foraging loggerhead sea turtles outside the breeding season identified using Argosâ€linked Fastlocâ€Global Positioning System. Marine Ecology, 2018, 39, e12489.	1.1	29
31	Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Marine Biology, 2017, 164, 1.	1.5	27
32	Quantifying wildlifeâ€watching ecotourism intensity on an endangered marine vertebrate. Animal Conservation, 2015, 18, 517-528.	2.9	23
33	The complete mitochondrial genome of the loggerhead turtle <i>Caretta caretta</i> (Testudines:) Tj ETQq1 1 0.	784314 rg 0.6	BT Overlock
34	COVIDâ€19 disruption reveals massâ€tourism pressure on nearshore sea turtle distributions and access to optimal breeding habitat. Evolutionary Applications, 2021, 14, 2516-2526.	3.1	18
35	Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens, 2021, 10, 1295.	2.8	16
36	Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization. Diversity and Distributions, 2022, 28, 810-829.	4.1	16

GAIL SCHOFIELD

#	Article	IF	CITATIONS
37	Unravelling the climatic niche overlap of global sea turtle nesting sites: Impact of geographical variation and phylogeny. Journal of Biogeography, 2017, 44, 2839-2848.	3.0	11
38	A review of how the biology of male sea turtles may help mitigate female-biased hatchling sex ratio skews in a warming climate. Marine Biology, 2022, 169, .	1.5	11
39	Delineating foraging grounds of a loggerhead turtle population through satellite tracking of juveniles. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1476-1482.	2.0	10
40	Global metaâ€analysis of over 50Âyears of multidisciplinary and international collaborations on transmissible cancers. Evolutionary Applications, 2020, 13, 1745-1755.	3.1	8
41	Knockâ€on effects of national risk assessments on the conservation of global biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27, 890-897.	2.0	5
42	More aggressive sea turtles win fights over foraging resources independent of body size and years of presence. Animal Behaviour, 2022, 190, 209-219.	1.9	5
43	Incorporating Geographical Scale and Multiple Environmental Factors to Delineate the Breeding Distribution of Sea Turtles. Drones, 2021, 5, 142.	4.9	4
44	Photo $\hat{a} {\in} i$ dentification confirms polyandry in loggerhead sea turtles. Marine Ecology, 0, , .	1.1	4
45	Aerial Drones Reveal the Dynamic Structuring of Sea Turtle Breeding Aggregations and Minimum Survey Effort Required to Capture Climatic and Sex-Specific Effects. Frontiers in Marine Science, 2022, 9, .	2.5	4