
Warayuth Sajomsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering C, 2010, 30, 357-363.	3.8	178
2	Anticoagulant activity of a sulfated chitosan. Carbohydrate Research, 2002, 337, 1239-1242.	1.1	153
3	Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization. International Journal of Biological Macromolecules, 2009, 44, 419-427.	3.6	150
4	Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity. Carbohydrate Research, 2009, 344, 2502-2511.	1.1	144
5	Novel quaternized chitosan containing \hat{l}^2 -cyclodextrin moiety: Synthesis, characterization and antimicrobial activity. Carbohydrate Polymers, 2011, 83, 905-913.	5.1	97
6	Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review. Carbohydrate Polymers, 2010, 80, 631-647.	5.1	87
7	Quaternization of N-(3-pyridylmethyl) chitosan derivatives: Effects of the degree of quaternization, molecular weight and ratio of N-methylpyridinium and N,N,N-trimethyl ammonium moieties on bactericidal activity. Carbohydrate Polymers, 2010, 82, 1143-1152.	5.1	81
8	Synthesis of methylated chitosan containing aromatic moieties: Chemoselectivity and effect on molecular weight. Carbohydrate Polymers, 2008, 72, 740-750.	5.1	80
9	Development of Chitosan-Based pH-Sensitive Polymeric Micelles Containing Curcumin for Colon-Targeted Drug Delivery. AAPS PharmSciTech, 2018, 19, 991-1000.	1.5	79
10	Antifungal property of quaternized chitosan and its derivatives. International Journal of Biological Macromolecules, 2012, 50, 263-269.	3.6	77
11	Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. European Polymer Journal, 2009, 45, 2319-2328.	2.6	75
12	Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydrate Polymers, 2012, 89, 623-631.	5.1	73
13	Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Research Letters, 2013, 8, 467.	3.1	64
14	Synthesis and characterization of N-aryl chitosan derivatives. International Journal of Biological Macromolecules, 2008, 43, 79-87.	3.6	63
15	In vitro Permeability Enhancement in Intestinal Epithelial Cells (Caco-2) Monolayer of Water Soluble Quaternary Ammonium Chitosan Derivatives. AAPS PharmSciTech, 2010, 11, 497-508.	1.5	61
16	Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohydrate Polymers, 2014, 104, 231-237.	5.1	60
17	Applications of magnetic resonance spectroscopy to chitin from insect cuticles. International Journal of Biological Macromolecules, 2012, 51, 514-522.	3.6	57
18	pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery. International Journal of Pharmaceutics, 2016, 497, 150-160.	2.6	54

WARAYUTH SAJOMSANG

#	Article	IF	CITATIONS
19	Synthesis and characterization of pH-responsive N-naphthyl-N,O-succinyl chitosan micelles for oral meloxicam delivery. Carbohydrate Polymers, 2015, 121, 99-106.	5.1	47
20	Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. International Journal of Pharmaceutics, 2014, 477, 261-272.	2.6	46
21	Mucoadhesive property and biocompatibility of methylated N-aryl chitosan derivatives. Carbohydrate Polymers, 2009, 78, 945-952.	5.1	41
22	N,N,N-Trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells. Carbohydrate Polymers, 2011, 85, 215-220.	5.1	41
23	Self-aggregates formation and mucoadhesive property of water-soluble β-cyclodextrin grafted with chitosan. International Journal of Biological Macromolecules, 2011, 48, 589-595.	3.6	37
24	Methylated N-aryl chitosan derivative/DNA complex nanoparticles for gene delivery: Synthesis and structure–activity relationships. Carbohydrate Polymers, 2009, 78, 743-752.	5.1	36
25	Methylated N-(4-N,N-dimethylaminocinnamyl) chitosan-coated electrospray OVA-loaded microparticles for oral vaccination. International Journal of Pharmaceutics, 2013, 448, 19-27.	2.6	35
26	Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic β-cyclodextrin-conjugated chitosan. Carbohydrate Polymers, 2011, 84, 186-194.	5.1	34
27	Methylated N-(4-N,N-dimethylaminobenzyl) chitosan for novel effective gene carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 207-214.	2.0	33
28	Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. International Journal of Pharmaceutics, 2008, 364, 127-134.	2.6	32
29	Layer-by-layer engineered nanocapsules of curcumin with improved cell activity. International Journal of Pharmaceutics, 2015, 492, 92-102.	2.6	32
30	Loading of Curcumin in Polyelectrolyte Multilayers. Langmuir, 2010, 26, 6869-6873.	1.6	29
31	Chitosan and its quaternized derivative as effective long dsRNA carriers targeting shrimp virus in Spodoptera frugiperda 9 cells. Journal of Biotechnology, 2012, 160, 97-104.	1.9	29
32	Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohydrate Polymers, 2013, 91, 508-517.	5.1	29
33	Phospholipid-chitosan hybrid nanoliposomes promoting cell entry for drug delivery against cervical cancer. Journal of Colloid and Interface Science, 2016, 480, 240-248.	5.0	25
34	Methylated N-(4-N,N-dimethylaminobenzyl) chitosan as effective gene carriers: Effect of degree of substitution. Carbohydrate Polymers, 2009, 75, 143-149.	5.1	23
35	Methylated N-(4-N,N-Dimethylaminobenzyl) Chitosan, a Novel Chitosan Derivative, Enhances Paracellular Permeability Across Intestinal Epithelial Cells (Caco-2). AAPS PharmSciTech, 2008, 9, 1143-1152.	1.5	22
36	Methylated <i>N</i> -(4- <i>N,N</i> -dimethylaminocinnamyl) chitosan enhances paracellular permeability across Caco-2 cells. Drug Delivery, 2010, 17, 301-312.	2.5	20

Warayuth Sajomsang

#	Article	IF	CITATIONS
37	Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system. Carbohydrate Polymers, 2011, 84, 216-222.	5.1	20
38	A comparison of spacer on water-soluble cyclodextrin grafted chitosan inclusion complex as carrier of eugenol to mucosae. Carbohydrate Polymers, 2013, 92, 321-327.	5.1	19
39	Silk Sericin Semi-interpenetrating Network Hydrogels Based on PEG-Diacrylate for Wound Healing Treatment. International Journal of Polymer Science, 2019, 2019, 1-10.	1.2	19
40	A water-soluble methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride as novel mucoadhesive polymeric nanocomplex platform for sustained-release drug delivery. Carbohydrate Polymers, 2011, 83, 1263-1273.	5.1	17
41	Effect of N-pyridinium positions of quaternized chitosan on transfection efficiency in gene delivery system. Carbohydrate Polymers, 2014, 104, 17-22.	5.1	14
42	Synthesis and Fluorescence Properties of N-Substituted 1-Cyanobenz[<i>f</i>]isoindole Chitosan Polymers and Nanoparticles for Live Cell Imaging. Biomacromolecules, 2014, 15, 2879-2888.	2.6	12
43	A kinetic and thermodynamic study of lac dye adsorption on silk yarn coated with microcrystalline chitosan. Coloration Technology, 2019, 135, 224-233.	0.7	11
44	Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging. International Journal of Biological Macromolecules, 2016, 86, 233-241.	3.6	10
45	Structure–activity relationships of methylated N-aryl chitosan derivatives for enhancing paracellular permeability across Caco-2 cells. Carbohydrate Polymers, 2011, 83, 430-437.	5.1	9
46	Biocompatibility study of quaternized chitosan on the proliferation and differentiation of Caco-2 cells as an in vitro model of the intestinal barrier. Journal of Bioactive and Compatible Polymers, 2017, 32, 92-107.	0.8	8
47	Investigation of gene transferring efficacy through nano-polyplex consisting of methylated N-(4-pyridinylmethyl) chitosan chloride and poly(ethylenimine) in human cell lines. Carbohydrate Polymers, 2010, 80, 276-284.	5.1	7
48	Nano-polyplex as a non-viral gene carrier for the expression of bone morphogenetic protein in osteoblastic cells. Carbohydrate Polymers, 2011, 86, 587-593.	5.1	3
49	Application of Methylated <i>N</i> -(4- <i>N,N</i> -Dimethylaminocinnamyl) Chitosan for Oral Protein Drug Delivery. Advanced Materials Research, 0, 506, 465-468.	0.3	1
50	Polymeric Micelles for Enhanced Solubility of Meloxicam in Oral Drug Delivery. Advanced Materials Research, 2014, 1060, 7-11.	0.3	1
51	Chitosan Polymeric Micelles for Prevention of Cisplatin-Induced Nephrotoxicity and Anticancer Activity of Cisplatin. , 2020, , .		1
52	<i>N</i> -Benzyl Chitosan <i>In Situ</i> Forming Antimicrobial Gel for Periodontitis Treatment. Advanced Materials Research, 0, 1060, 159-163.	0.3	0
53	Physicochemical investigation of the enhanced removal of methylene blue from aqueous solution using polydopamine/silver nanoparticles. Journal of the Textile Institute, 0, , 1-12.	1.0	0