
Davor Solter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science, 2017, 357, 707-713.	6.0	181
2	Inappropriate cadherin switching in the mouse epiblast compromises proper signaling between the epiblast and the extraembryonic ectoderm during gastrulation. Scientific Reports, 2016, 6, 26562.	1.6	17
3	β-catenin-mediated adhesion is required for successful preimplantation mouse embryo development. Development (Cambridge), 2016, 143, 1993-1999.	1.2	29
4	Preformation Versus Epigenesis in Early Mammalian Development. Current Topics in Developmental Biology, 2016, 117, 377-391.	1.0	12
5	Erase–Maintain–Establish: Natural Reprogramming of the Mammalian Epigenome. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 155-163.	2.0	22
6	Development of Teratocarcinomas and Teratomas in Severely Immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/Szj (NSG) Mice. Stem Cells and Development, 2015, 24, 1515-1520.	1.1	6
7	DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes and Development, 2014, 28, 812-828.	2.7	577
8	Single-Cell DNA-Methylation Analysis Reveals Epigenetic Chimerism in Preimplantation Embryos. Science, 2013, 341, 1110-1112.	6.0	145
9	Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes and Development, 2013, 27, 1441-1446.	2.7	85
10	A genetic and developmental pathway from STAT3 to the OCT4–NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes and Development, 2013, 27, 1378-1390.	2.7	151
11	The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development (Cambridge), 2013, 140, 3819-3825.	1.2	73
12	Developmental fate and lineage commitment of singled mouse blastomeres. Development (Cambridge), 2012, 139, 3722-3731.	1.2	66
13	<i>Trim28</i> Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition. Science, 2012, 335, 1499-1502.	6.0	287
14	Symmetric cell division of the mouse zygote requires an actin network. Cytoskeleton, 2012, 69, 1040-1046.	1.0	21
15	Viable Rat-Mouse Chimeras: Where Do We Go from Here?. Cell, 2010, 142, 676-678.	13.5	6
16	The Role of Animal Models in Evaluating Reasonable Safety and Efficacy for Human Trials of Cell-Based Interventions for Neurologic Conditions. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1-9.	2.4	34
17	Fatal flaws in the case for prepatterning in the mouse egg. Reproductive BioMedicine Online, 2006, 12, 150-152.	1.1	15
18	From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Reviews Genetics, 2006, 7, 319-327.	7.7	271

#	Article	IF	CITATIONS
19	Does prepatterning occur in the mouse egg?. Nature, 2006, 442, E3-E4.	13.7	35
20	Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes and Development, 2006, 20, 2713-2727.	2.7	147
21	Ribosomal Protein S6 Gene Haploinsufficiency Is Associated with Activation of a p53-Dependent Checkpoint during Gastrulation. Molecular and Cellular Biology, 2006, 26, 8880-8891.	1.1	122
22	Space Asymmetry Directs Preferential Sperm Entry in the Absence of Polarity in the Mouse Oocyte. PLoS Biology, 2006, 4, e135.	2.6	32
23	Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes and Development, 2005, 19, 1081-1092.	2.7	172
24	ETHICS: Moral Issues of Human-Non-Human Primate Neural Grafting. Science, 2005, 309, 385-386.	6.0	89
25	Politically Correct Human Embryonic Stem Cells?. New England Journal of Medicine, 2005, 353, 2321-2323.	13.9	21
26	Mechanism of First Cleavage Specification in the Mouse Egg: Is Our Body Plan Set at Day 0?. Cell Cycle, 2005, 4, 661-664.	1.3	17
27	Stabilization of \hat{l}^2 -catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development (Cambridge), 2004, 131, 5817-5824.	1.2	139
28	Maternal β-catenin and E-cadherin in mouse development. Development (Cambridge), 2004, 131, 4435-4445.	1.2	192
29	First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature, 2004, 430, 360-364.	13.7	139
30	Retrotransposons Regulate Host Genes in Mouse Oocytes and Preimplantation Embryos. Developmental Cell, 2004, 7, 597-606.	3.1	610
31	Public Stem Cell Banks: Considerations of Justice in Stem Cell Research and Therapy. Hastings Center Report, 2003, 33, 13.	0.7	66
32	New paths to human ES cells?. Nature Biotechnology, 2003, 21, 1154-1155.	9.4	1
33	Safety issues in cell-based intervention trials. Fertility and Sterility, 2003, 80, 1077-1085.	0.5	72
34	Molecular control of the oocyte to embryo transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1381-1388.	1.8	28
35	Comment on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature" (II). Science, 2003, 302, 393c-393.	6.0	75
36	Public stem cell banks: considerations of justice in stem cell research and therapy. Hastings Center Report, 2003, 33, 13-27.	0.7	22

#	Article	IF	CITATIONS
37	Cloning v. clowning. Genes and Development, 2002, 16, 1163-1166.	2.7	9
38	Fertilization and Activation of the Embryonic Genome. , 2002, , 5-19.		9
39	Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Molecular Reproduction and Development, 2001, 59, 144-158.	1.0	22
40	Mammalian cloning: advances and limitations. Nature Reviews Genetics, 2000, 1, 199-207.	7.7	231
41	Cloning claims challenged. Nature, 1999, 399, 13-13.	13.7	9
42	Expression ofMelk, a new protein kinase, during early mouse development. Developmental Dynamics, 1999, 215, 344-351.	0.8	51
43	SPIN, a substrate in the MAP kinase pathway in mouse oocytes. Molecular Reproduction and Development, 1998, 50, 240-249.	1.0	38
44	Dolly is a clone $\hat{a} \in \mathbb{C}$ and no longer alone. Nature, 1998, 394, 315-316.	13.7	36
45	New member of the Snf1/AMPK kinase family,Melk, is expressed in the mouse egg and preimplantation embryo. Molecular Reproduction and Development, 1997, 47, 148-156.	1.0	120
46	Developmental consequences of two paternal copies of imprinted chromosome region distal 7 in mice. Journal of Cellular Physiology, 1997, 173, 242-246.	2.0	3
47	Maid: a maternally transcribed novel gene encoding a potential negative regulator of bHLH proteins in the mouse egg and zygote. , 1997, 209, 217-226.		40
48	Expression and cell membrane localization of catenins during mouse preimplantation development. , 1996, 206, 391-402.		89
49	Lambing by nuclear transfer. Nature, 1996, 380, 24-25.	13.7	25
50	Mechanistic and Developmental Aspects of Genetic Imprinting in Mammals. International Review of Cytology, 1995, 160, 53-98.	6.2	34
51	Alterations in Protein Synthesis Following Transplantation of Mouse 8-Cell Stage Nuclei to Enucleated 1-Cell Embryos. Developmental Biology, 1994, 163, 341-350.	0.9	39
52	Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells. Transgenic Research, 1993, 2, 183-190.	1.3	64
53	[43] Transplantation of nuclei to oocytes and embryos. Methods in Enzymology, 1993, 225, 719-732.	0.4	33
54	[35] Construction of primary and subtracted cDNA libraries from early embryos. Methods in Enzymology, 1993, 225, 587-610.	0.4	45

#	Article	IF	CITATIONS
55	Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. Developmental Biology, 1992, 149, 457-462.	0.9	141
56	Relevance of genomic imprinting to human diseases. Current Opinion in Biotechnology, 1992, 3, 632-636.	3.3	6
57	Activation of a two-cell stage-specific gene following transfer of heterologous nuclei into enucleated mouse embryos. Molecular Reproduction and Development, 1991, 30, 182-186.	1.0	57
58	Chimeras between parthenogenetic or androgenetic blastomeres and normal embryos: Allocation to the inner cell mass and trophectoderm. Developmental Biology, 1989, 131, 580-583.	0.9	41
59	Expression of SPARC/osteonectin transcript in murine embryos and gonads. Differentiation, 1988, 37, 20-25.	1.0	31
60	Chapter 3 Developmental Potency of Gametic and Embryonic Genomes Revealed by Nuclear Transfer. Current Topics in Developmental Biology, 1987, 23, 55-71.	1.0	8
61	Inertia of the embryonic genome in mammals. Trends in Genetics, 1987, 3, 23-27.	2.9	30
62	Expression and cAMP-mediated regulation of the human gonadotropin alpha subunit gene in transfected mouse L-cells. Differentiation, 1987, 36, 255-259.	1.0	0
63	Red Cell Antigens P (Globoside) and Luke: Identification by Monoclonal Antibodies Defining the Murine Stage‧pecific Embryonic Antigens â€3 and â€4 (SSEAâ€3 and SSEAâ€4) ¹ . Vox Sanguinis, 1986, 5	51 <mark>,5</mark> 3-56.	68
64	Nuclear and Cytoplasmic Transfer in Mammalian Embryos. , 1986, 4, 37-55.		8
65	Role of Cell Surface Molecules in Mammalian Development. , 1986, , 1070-1078.		3
66	SSEA-1, a stage-specific embryonic antigen of the mouse, is carried by the glycoprotein-bound large carbohydrate in embryonal carcinoma cells. Cell Differentiation, 1985, 16, 169-173.	1.3	59
67	Cell surface glycoproteins mediate compaction, trophoblast attachment, and endoderm formation during early mouse development. Developmental Biology, 1985, 108, 513-521.	0.9	80
68	Onset of paternal and maternal Gpi-1 expression in preimplantation mouse embryos. Developmental Biology, 1985, 109, 515-517.	0.9	26
69	Maternal Thp lethality in the mouse is a nuclear, not cytoplasmic, defect. Nature, 1984, 308, 550-551.	13.7	89
70	Stage-specific embryonic antigen 3 as a marker of visceral extraembryonic endoderm. Developmental Biology, 1984, 103, 263-266.	0.9	50
71	Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37, 179-183.	13.5	1,452
72	Nuclear transplantation in mouse embryos. The Journal of Experimental Zoology, 1983, 228, 355-362.	1.4	100

#	Article	IF	CITATIONS
73	Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell, 1983, 34, 455-466.	13.5	402
74	Experimental Mouse Teratocarcinoma. , 1983, , 343-356.		0
75	Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell, 1982, 30, 697-705.	13.5	378
76	Murine embryonic antigen (SSEA-1) is expressed on human cells and structurally related human blood group antigen I is expressed on mouse embryos. Developmental Biology, 1982, 93, 54-58.	0.9	79
77	Embryo-derived teratocarcinoma. IV. The role of immune factors in the regulation of teratocarcinogenesis. International Journal of Cancer, 1982, 30, 759-762.	2.3	3
78	Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Developmental Biology, 1981, 83, 391-398.	0.9	278
79	The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: A preliminary note. Biochemical and Biophysical Research Communications, 1981, 100, 1578-1586.	1.0	183
80	Embryo-derived teratocarcinoma II. Teratocarcinogenesis depends on the type of embryonic graft. International Journal of Cancer, 1980, 25, 341-343.	2.3	14
81	Identification of noncollagenous basement membrane glycopolypeptides synthesized by mouse parietal entoderm and an entodermal cell line. Developmental Biology, 1980, 77, 480-487.	0.9	66
82	Cell Differentiation and Neoplasia.Grady F. Saunders. Quarterly Review of Biology, 1979, 54, 79-80.	0.0	0
83	Teratocarcinomas rarely develop from embryos transplanted into athymic mice. Nature, 1979, 278, 554-555.	13.7	25
84	The induction of antigenic changes in a teratocarcinoma stem cell line (F9) by retinoic acid. Developmental Biology, 1979, 70, 515-521.	0.9	163
85	Ultrastructural cytochemistry of membrane-bound phosphatases in preimplantation mouse embryos. Developmental Biology, 1977, 55, 117-134.	0.9	84
86	Brain and sperm cell surface antigen (NS-4) on preimplantation mouse embryos. Developmental Biology, 1976, 52, 98-104.	0.9	48
87	Ultrastructure of mouse egg cylinders developed in vitro. The Anatomical Record, 1974, 180, 263-279.	2.3	27
88	Embryo-derived teratocarcinomas elicit splenomegaly in syngeneic host. Nature, 1974, 249, 569-571.	13.7	16
89	Host-related factors determine the outgrowth of teratocarcinomas from Mouse egg-cylinders. Zeitschrift F¼r Krebsforschung Und Klinische Onkologie, 1974, 81, 63-69.	0.8	14
90	Experimental Teratoma. Current Topics in Pathology Ergebnisse Der Pathologie, 1974, 59, 69-129.	0.2	157

	DAV	Davor Solter		
#	Article	IF	Citations	
91	Extrauterine Growth of Mouse Egg-cylinders results in Malignant Teratoma. Nature, 1970, 227, 503-50	4. 13.7	161	