
Norihito Nakamichi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the <i>Arabidopsis</i> Circadian Clock Â. Plant Cell, 2010, 22, 594-605.	6.6	507
2	PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 686-698.	3.1	297
3	Transcriptional repressor PRR5 directly regulates clock-output pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17123-17128.	7.1	253
4	Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. Plant Cell, 2016, 28, 696-711.	6.6	227
5	Arabidopsis Clock-Associated Pseudo-Response Regulators PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway. Plant and Cell Physiology, 2007, 48, 822-832.	3.1	197
6	Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). Plant and Cell Physiology, 2005, 46, 677-685.	3.1	188
7	The Arabidopsis Pseudo-response Regulators, PRR5 and PRR7, Coordinately Play Essential Roles for Circadian Clock Function. Plant and Cell Physiology, 2005, 46, 609-619.	3.1	111
8	Molecular Mechanisms Underlying the Arabidopsis Circadian Clock. Plant and Cell Physiology, 2011, 52, 1709-1718.	3.1	86
9	Adaptation to the Local Environment by Modifications of the Photoperiod Response in Crops. Plant and Cell Physiology, 2015, 56, 594-604.	3.1	85
10	Characterization of Plant Circadian Rhythms by Employing Arabidopsis Cultured Cells with Bioluminescence Reporters. Plant and Cell Physiology, 2004, 45, 57-67.	3.1	84
11	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	7.1	77
12	Compilation and Characterization of a Novel WNK Family of Protein Kinases inArabiodpsis thalianawith Reference to Circadian Rhythms. Bioscience, Biotechnology and Biochemistry, 2002, 66, 2429-2436.	1.3	63
13	Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs. Plant and Cell Physiology, 2016, 57, 1085-1097.	3.1	60
14	Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 201-213.	3.1	56
15	Cell Autonomous Circadian Waves of the APRR1/TOC1 Quintet in an Established Cell Line of Arabidopsis thaliana. Plant and Cell Physiology, 2003, 44, 360-365.	3.1	45
16	His-to-Asp Phosphorelay Circuitry for Regulation of Sexual Development inSchizosaccharomyces pombe. Bioscience, Biotechnology and Biochemistry, 2002, 66, 2663-2672.	1.3	27
17	Characterization of the Prr1 Response Regulator with Special Reference to Sexual Development inSchizosaccharomyces pombe. Bioscience, Biotechnology and Biochemistry, 2003, 67, 547-555.	1.3	25
18	Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2013, 8, e22863.	2.4	25

#	Article	IF	CITATIONS
19	Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes inArabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2007, 71, 527-534.	1.3	24
20	A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene. Plant and Cell Physiology, 2009, 50, 290-303.	3.1	24
21	The <i>LNK1</i> night light-inducible and clock-regulated gene is induced also in response to warm-night through the circadian clock nighttime repressor in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2014, 9, e28505.	2.4	20
22	Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-RESPONSE REGULATOR 5. Bioscience, Biotechnology and Biochemistry, 2020, 84, 970-979.	1.3	19
23	3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity. Plant and Cell Physiology, 2019, 60, 2360-2368.	3.1	17
24	Plant clock modifications for adapting flowering time to local environments. Plant Physiology, 2022, 190, 952-967.	4.8	17
25	Structure–function study of a novel inhibitor of the casein kinase 1 family in Arabidopsis thaliana. Plant Direct, 2019, 3, e00172.	1.9	15
26	Identification and Characterization of a Novel Gene, hos2 +, the Function of Which Is Necessary for Growth under High Osmotic Stress in Fission Yeast. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2493-2496.	1.3	14
27	Evolutionary Insight into the Clock-Associated PRR5 Transcriptional Network of Flowering Plants. Scientific Reports, 2019, 9, 2983.	3.3	13
28	Phosphorylation of RNA Polymerase II by CDKC;2 Maintains the Arabidopsis Circadian Clock Period. Plant and Cell Physiology, 2022, 63, 450-462.	3.1	10
29	Chemical biology to dissect molecular mechanisms underlying plant circadian clocks. New Phytologist, 2022, 235, 1336-1343.	7.3	8
30	Rhythmic and Light-Inducible Appearance of Clock-Associated Pseudo-Response Regulator Protein PRR9 through Programmed Degradation in the Dark in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 133-133.	3.1	0