Kacey G Marra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432970/publications.pdf Version: 2024-02-01

KACEV C. MADDA

#	Article	IF	CITATIONS
1	Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30, 2499-2506.	5.7	869
2	Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials, 2010, 3, 1746-1767.	1.3	536
3	In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. , 1999, 47, 324-335.		333
4	Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 2009, 30, 6844-6853.	5.7	332
5	Biomaterials for the Development of Peripheral Nerve Guidance Conduits. Tissue Engineering - Part B: Reviews, 2012, 18, 40-50.	2.5	321
6	Regional Anatomic and Age Effects on Cell Function of Human Adipose-Derived Stem Cells. Annals of Plastic Surgery, 2008, 60, 538-544.	0.5	287
7	Adipose-derived stem cells: Implications in tissue regeneration. World Journal of Stem Cells, 2014, 6, 312.	1.3	278
8	Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials, 2006, 27, 2962-2969.	5.7	244
9	Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Translational Research, 2014, 163, 399-408.	2.2	219
10	Body Image and Quality of Life in Post Massive Weight Loss Body Contouring Patients. Obesity, 2006, 14, 1626-1636.	1.5	218
11	Adipose Tissue Engineering for Soft Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 413-426.	2.5	212
12	Comparison of Harvest and Processing Techniques for Fat Grafting and Adipose Stem Cell Isolation. Plastic and Reconstructive Surgery, 2013, 132, 351-361.	0.7	168
13	Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials, 2006, 27, 1579-1585.	5.7	161
14	Role of Gender and Anatomical Region on Induction of Osteogenic Differentiation of Human Adipose-derived Stem Cells. Annals of Plastic Surgery, 2008, 60, 306-322.	0.5	152
15	Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomaterialia, 2009, 5, 2591-2600.	4.1	147
16	Delivery of Adipose-Derived Precursor Cells for Peripheral Nerve Repair. Cell Transplantation, 2009, 18, 145-158.	1.2	139
17	Adipose-Derived Stem Cells for Wound Healing Applications. Annals of Plastic Surgery, 2011, 66, 210-215.	0.5	139
18	Direct Synthesis of Biodegradable Polysaccharide Derivative Hydrogels Through Aqueous Dielsâ€Alder Chemistry. Macromolecular Rapid Communications, 2011, 32, 905-911.	2.0	132

#	Article	IF	CITATIONS
19	The Osteogenic Potential of Adipose-Derived Stem Cells for the Repair of Rabbit Calvarial Defects. Annals of Plastic Surgery, 2006, 56, 543-548.	0.5	131
20	Adipogenic Potential of Adipose Stem Cell Subpopulations. Plastic and Reconstructive Surgery, 2011, 128, 663-672.	0.7	118
21	Application of Platelet-Rich Plasma and Platelet-Rich Fibrin in Fat Grafting: Basic Science and Literature Review. Tissue Engineering - Part B: Reviews, 2014, 20, 267-276.	2.5	117
22	Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis and Cartilage, 2008, 16, 1121-1130.	0.6	114
23	Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomaterialia, 2013, 9, 5243-5250.	4.1	114
24	The Potential of Adipose-Derived Adult Stem Cells as a Source of Neuronal Progenitor Cells. Plastic and Reconstructive Surgery, 2005, 116, 1453-1460.	0.7	109
25	Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis, 2010, 6, 173-180.	0.4	106
26	Composition Options for Tissue-Engineered Bone. Tissue Engineering, 2002, 8, 529-539.	4.9	104
27	Collagenous Microbeads as a Scaffold for Tissue Engineering with Adipose-Derived Stem Cells. Plastic and Reconstructive Surgery, 2007, 120, 414-424.	0.7	103
28	Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites. Materials Research Bulletin, 2004, 39, 417-432.	2.7	101
29	Adipose-Derived Stems Cells and Their Role in Human Cancer Development, Growth, Progression, and Metastasis: A Systematic Review. Cancer Research, 2015, 75, 1161-1168.	0.4	100
30	Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. Acta Biomaterialia, 2006, 2, 277-286.	4.1	99
31	Diffusion of soluble factors through degradable polymer nerve guides: Controlling manufacturing parameters. Acta Biomaterialia, 2009, 5, 2540-2550.	4.1	99
32	Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 790-797.	1.3	98
33	Adipose-Derived Mesenchymal Stem Cells: Biology and Potential Applications. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 59-71.	0.6	98
34	Prevalence of Endogenous CD34+ Adipose Stem Cells Predicts Human Fat Graft Retention in a Xenograft Model. Plastic and Reconstructive Surgery, 2013, 132, 845-858.	0.7	94
35	Long-gap peripheral nerve repair through sustained release of a neurotrophic factor in nonhuman primates. Science Translational Medicine, 2020, 12,	5.8	94
36	Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials, 2004, 25, 1269-1278.	5.7	93

#	Article	IF	CITATIONS
37	Adipose-derived stem cells differentiate to keratocytes in vitro. Molecular Vision, 2010, 16, 2680-9.	1.1	89
38	Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomechanics and Modeling in Mechanobiology, 2007, 6, 265-273.	1.4	87
39	Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor. Biomaterials, 2010, 31, 2313-2322.	5.7	86
40	Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. Journal of Biomedical Materials Research Part B, 2000, 52, 279-284.	3.0	85
41	Bone Morphogenetic Protein 2 Therapy for Craniofacial Surgery. Journal of Craniofacial Surgery, 2008, 19, 1244-1259.	0.3	78
42	The Role of Adipose-Derived Stem Cells in Breast Cancer Progression and Metastasis. Stem Cells International, 2015, 2015, 1-17.	1.2	77
43	Adipose-derived stem cells for soft tissue reconstruction. Regenerative Medicine, 2009, 4, 109-117.	0.8	76
44	Adipose Stem Cells. Clinics in Plastic Surgery, 2015, 42, 169-179.	0.7	72
45	FGF-2 Enhances Vascularization for Adipose Tissue Engineering. Plastic and Reconstructive Surgery, 2008, 121, 1153-1164.	0.7	71
46	Characterization of Transplanted Green Fluorescent Protein+ Bone Marrow Cells into Adipose Tissue. Stem Cells, 2008, 26, 330-338.	1.4	70
47	Adipose- and Bone Marrow–Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. Transplantation, 2015, 99, 1765-1773.	0.5	70
48	Silk Fibroin Conduits. Annals of Plastic Surgery, 2011, 66, 273-279.	0.5	69
49	The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems. Advanced Healthcare Materials, 2016, 5, 1667-1677.	3.9	69
50	Controlled in vivo Degradation of Genipin Crosslinked Polyethylene Glycol Hydrogels within Osteochondral Defects. Tissue Engineering, 2006, 12, 2657-2663.	4.9	67
51	Particle size in fat graft retention: A review on the impact of harvesting technique in lipofilling surgical outcomes. Adipocyte, 2014, 3, 273-279.	1.3	67
52	Adipose stem cell-based soft tissue regeneration. Expert Opinion on Biological Therapy, 2012, 12, 155-163.	1.4	66
53	Comparison of Biodegradable Conduits within Aged Rat Sciatic Nerve Defects. Plastic and Reconstructive Surgery, 2007, 119, 1839-1851.	0.7	65
54	Adipose Stem Cells for Soft Tissue Regeneration. Handchirurgie Mikrochirurgie Plastische Chirurgie, 2010, 42, 124-128.	0.2	65

#	Article	IF	CITATIONS
55	Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. Journal of Biomedical Materials Research Part B, 2004, 71B, 181-187.	3.0	63
56	Adipogenesis of Human Adipose-Derived Stem Cells Within Three-Dimensional Hollow Fiber-Based Bioreactors. Tissue Engineering - Part C: Methods, 2012, 18, 54-61.	1.1	63
57	Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue. Tissue Engineering - Part C: Methods, 2013, 19, 745-754.	1.1	63
58	The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. Journal of Materials Science: Materials in Medicine, 2001, 12, 673-677.	1.7	62
59	Injectable Allograft Adipose Matrix Supports Adipogenic Tissue Remodeling in the Nude Mouse and Human. Plastic and Reconstructive Surgery, 2019, 143, 299e-309e.	0.7	60
60	Sustained Growth Factor Delivery Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair. Tissue Engineering - Part A, 2011, 17, 1263-1275.	1.6	59
61	Characteristics and Immunomodulating Functions of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells Across Defined Human Leukocyte Antigen Barriers. Frontiers in Immunology, 2018, 9, 1642.	2.2	59
62	Keratin Gel Filler for Peripheral Nerve Repair in a Rodent Sciatic Nerve Injury Model. Plastic and Reconstructive Surgery, 2012, 129, 67-78.	0.7	57
63	Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomaterialia, 2020, 102, 326-340.	4.1	57
64	Genipin enhances the mechanical properties of tissueâ€engineered cartilage and protects against inflammatory degradation when used as a medium supplement. Journal of Biomedical Materials Research - Part A, 2009, 91A, 692-700.	2.1	56
65	Injectable Silk Foams for Soft Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 452-459.	3.9	56
66	The Effects of Platelet-Rich Plasma on Cell Proliferation and Adipogenic Potential of Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2015, 21, 2714-2722.	1.6	55
67	A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. Journal of Tissue Engineering, 2014, 5, 204173141455685.	2.3	52
68	BMP-2-Based Repair of Large-Scale Calvarial Defects in an Experimental Model. Journal of Craniofacial Surgery, 2008, 19, 1315-1322.	0.3	51
69	Regulation of α-Smooth Muscle Actin Protein Expression in Adipose-Derived Stem Cells. Cells Tissues Organs, 2006, 183, 80-86.	1.3	50
70	Controlled release of bioactive doxorubicin from microspheres embedded within gelatin scaffolds. Journal of Biomedical Materials Research - Part A, 2006, 79A, 954-962.	2.1	50
71	Estrogen Sulfotransferase Inhibits Adipocyte Differentiation. Molecular Endocrinology, 2011, 25, 1612-1623.	3.7	49
72	The Influence of Timing and Frequency of Adipose-Derived Mesenchymal Stem Cell Therapy on Immunomodulation Outcomes After Vascularized Composite Allotransplantation. Transplantation, 2017, 101, e1-e11.	0.5	48

#	Article	IF	CITATIONS
73	Novel multiarm PEGâ€based hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 979-987.	2.1	47
74	Protein bioactivity and polymer orientation is affected by stabilizer incorporation for double-walled microspheres. Journal of Controlled Release, 2010, 141, 168-176.	4.8	47
75	Spatially Controlled Delivery of Neurotrophic Factors in Silk Fibroin–Based Nerve Conduits for Peripheral Nerve Repair. Annals of Plastic Surgery, 2011, 67, 147-155.	0.5	47
76	Administration of adipose-derived stem cells enhances vascularity, induces collagen deposition, and dermal adipogenesis in burn wounds. Burns, 2016, 42, 1212-1222.	1.1	46
77	Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair. Journal of Neuroscience Methods, 2015, 255, 122-130.	1.3	45
78	Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds. Biomaterials, 2013, 34, 2960-2968.	5.7	44
79	Estrogen Sulfotransferase/SULT1E1 Promotes Human Adipogenesis. Molecular and Cellular Biology, 2014, 34, 1682-1694.	1.1	44
80	Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhesion. Acta Biomaterialia, 2009, 5, 1416-1424.	4.1	42
81	Cardiomyogenic differentiation potential of human adipose precursor cells. International Journal of Cardiology, 2009, 133, 399-401.	0.8	42
82	Injectable systems and implantable conduits for peripheral nerve repair. Biomedical Materials (Bristol), 2012, 7, 024102.	1.7	42
83	The use of adipose-derived stem cells as sheets for wound healing. Organogenesis, 2013, 9, 79-81.	0.4	42
84	VEGF Microsphere Technology to Enhance Vascularization in Fat Grafting. Annals of Plastic Surgery, 2012, 69, 213-219.	0.5	39
85	Oncologic Safety of Fat Grafting for Autologous Breast Reconstruction in an Animal Model of Residual Breast Cancer. Plastic and Reconstructive Surgery, 2019, 143, 103-112.	0.7	39
86	Regenerative Surgery in Cranioplasty Revisited. Plastic and Reconstructive Surgery, 2011, 128, 1053-1060.	0.7	38
87	Rabbit Calvarial Wound Healing by Means of Seeded Caprotite® Scaffolds. Journal of Dental Research, 2003, 82, 131-135.	2.5	37
88	Initial observations on using magnesium metal in peripheral nerve repair. Journal of Biomaterials Applications, 2015, 29, 1145-1154.	1.2	36
89	Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds. Acta Biomaterialia, 2008, 4, 244-255.	4.1	35
90	Atomic Force Microscopy Studies of Hydration of Fluorinated Amide/Urethane Copolymer Film Surfaces. Langmuir, 1998, 14, 3976-3982.	1.6	33

#	Article	IF	CITATIONS
91	Delivery of adiposeâ€derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle and Nerve, 2018, 58, 251-260.	1.0	33
92	Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Frontiers in Pharmacology, 2018, 9, 507.	1.6	31
93	A Novel Perfluoroelastomer Seeded with Adipose-Derived Stem Cells for Soft-Tissue Repair. Plastic and Reconstructive Surgery, 2006, 118, 1132-1142.	0.7	30
94	Adipose Stem Cell Differentiation into Smooth Muscle Cells. Methods in Molecular Biology, 2011, 702, 261-268.	0.4	30
95	Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Medical Genomics, 2015, 8, 41.	0.7	30
96	Single Implantable FK506 Disk Prevents Rejection in Vascularized Composite Allotransplantation. Plastic and Reconstructive Surgery, 2017, 139, 403e-414e.	0.7	30
97	<scp>S</scp> hort and long gap peripheral nerve repair with magnesium metal filaments. Journal of Biomedical Materials Research - Part A, 2017, 105, 3148-3158.	2.1	30
98	Design and Synthesis of Hydroxyapatite Composites Containing an mPEGâ^'Dendritic Poly(l-lysine) Star Polycaprolactone. Macromolecules, 2004, 37, 8959-8966.	2.2	29
99	Encapsulation of adipogenic factors to promote differentiation of adipose-derived stem cells. Journal of Drug Targeting, 2009, 17, 207-215.	2.1	29
100	Adipose Tissue Regeneration. Current Stem Cell Research and Therapy, 2010, 5, 116-121.	0.6	29
101	The Architecture of Fat Grafting. Plastic and Reconstructive Surgery, 2016, 137, 1072-1079.	0.7	29
102	Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 733-742.	1.3	29
103	Effects of Immunosuppressive Drugs on Viability and Susceptibility of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells. Frontiers in Immunology, 2015, 6, 131.	2.2	28
104	An Animal Model of Local Breast Cancer Recurrence in the Setting of Autologous Fat Grafting for Breast Reconstruction. Stem Cells Translational Medicine, 2018, 7, 125-134.	1.6	28
105	Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 141-151.	1.9	27
106	The Architecture of Fat Grafting II: Impact of Cannula Diameter. Plastic and Reconstructive Surgery, 2018, 142, 1219-1225.	0.7	27
107	Using PC12 Cells To Evaluate Poly(caprolactone) and Collagenous Microcarriers for Applications in Nerve Guide Fabrication. Biotechnology Progress, 2003, 19, 1767-1774.	1.3	25
108	Incorporation of polymer microspheres within fibrin scaffolds for the controlled delivery of FGF-1. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1327-1336.	1.9	25

#	Article	IF	CITATIONS
109	Healing of grafted adipose tissue: Current clinical applications of adiposeâ€derived stem cells for breast and face reconstruction. Wound Repair and Regeneration, 2014, 22, 11-13.	1.5	24
110	Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthetic Surgery Journal, 2017, 37, sjw197.	0.9	24
111	Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Engineering - Part A, 2016, 22, 621-632.	1.6	24
112	Biomechanical properties of the superficial fascial system. Aesthetic Surgery Journal, 2006, 26, 395-403.	0.9	23
113	Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications. Journal of Tissue Engineering, 2015, 6, 204173141557921.	2.3	23
114	Adiposeâ€derived stem cells integrate into trabecular meshwork with glaucoma treatment potential. FASEB Journal, 2020, 34, 7160-7177.	0.2	23
115	Optimization and Standardization of the Immunodeficient Mouse Model for Assessing Fat Grafting Outcomes. Plastic and Reconstructive Surgery, 2017, 140, 1185-1194.	0.7	22
116	Soft Tissue Reconstruction. Methods in Molecular Biology, 2011, 702, 395-400.	0.4	21
117	The potential of adiposeâ€derived stem cells in craniofacial repair and regeneration. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 95-97.	3.6	20
118	Synergistic Lithium Chloride and Glial Cell Line–Derived Neurotrophic Factor Delivery for Peripheral Nerve Repair in a Rodent Sciatic Nerve Injury Model. Plastic and Reconstructive Surgery, 2013, 132, 251e-262e.	0.7	18
119	An exploratory study on the preparation and evaluation of a "same-day―adipose stem cell–based tissue-engineered vascular graft. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1814-1822.e3.	0.4	18
120	Adipose stem cells enhance excisional wound healing in a porcine model. Journal of Surgical Research, 2018, 229, 243-253.	0.8	18
121	Determination of Low Critical Surface Tensions of Novel Fluorinated Poly(amide urethane) Block Copolymers. 3. Siloxane-Containing Side Chains. Macromolecules, 1996, 29, 7553-7558.	2.2	17
122	Adipose stem cell therapy for soft tissue reconstruction. Lancet, The, 2013, 382, 1077-1079.	6.3	17
123	Novel three Dimensional Biodegradable Scaffolds for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 1998, 550, 155.	0.1	16
124	A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 1326-1331.	2.3	15
125	The role of adipose-derived stem cells in endometrial cancer proliferation. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 54-58.	0.6	15
126	Changing the Paradigm of Craniofacial Reconstruction. Annals of Surgery, 2021, 273, 1004-1011.	2.1	15

#	Article	IF	CITATIONS
127	The Role of Chondroitinase as an Adjuvant to Peripheral Nerve Repair. Cells Tissues Organs, 2014, 200, 59-68.	1.3	14
128	Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention. Journal of Tissue Engineering, 2017, 8, 204173141773540.	2.3	14
129	Amputation-Site Soft-Tissue Restoration Using Adipose Stem Cell Therapy. Plastic and Reconstructive Surgery, 2018, 142, 1349-1352.	0.7	14
130	Evaluation of Porcine Versus Human Mesenchymal Stromal Cells From Three Distinct Donor Locations for Cytotherapy. Frontiers in Immunology, 2020, 11, 826.	2.2	14
131	Adiposeâ€derived stem cells delay muscle atrophy after peripheral nerve injury in the rodent model. Muscle and Nerve, 2019, 59, 603-610.	1.0	13
132	The Future of Facial Fat Grafting. Journal of Craniofacial Surgery, 2019, 30, 644-651.	0.3	13
133	Adipogenic Factor-Loaded Microspheres Increase Retention of Transplanted Adipose Tissue. Tissue Engineering - Part A, 2014, 20, 2283-2290.	1.6	12
134	Imaging the Stromal Vascular Fraction during Soft-Tissue Reconstruction. Plastic and Reconstructive Surgery, 2015, 136, 1205-1215.	0.7	12
135	Polymeric Biomaterials for Nerve Regeneration: Fabrication and Implantation of a Biodegradable Nerve Guide. Methods in Molecular Biology, 2014, 1162, 139-148.	0.4	12
136	Calcium Aluminate, RGD-Modified Calcium Aluminate, and β-Tricalcium Phosphate Implants in a Calvarial Defect. Journal of Craniofacial Surgery, 2009, 20, 1538-1543.	0.3	11
137	Adipose Stem Cells Enhance Nerve Regeneration and Muscle Function in a Peroneal Nerve Ablation Model. Tissue Engineering - Part A, 2021, 27, 297-310.	1.6	11
138	Leporine-Derived Adipose Precursor Cells Exhibit In Vitro Osteogenic Potential. Journal of Craniofacial Surgery, 2008, 19, 360-368.	0.3	10
139	Adipose derived delivery vehicle for encapsulated adipogenic factors. Acta Biomaterialia, 2017, 58, 26-33.	4.1	10
140	Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic) Tj ETQq0 0 0 rgBT /Ove Technology, 2016, 203, 59-66.	rlock 10 T 1.7	f 50 227 Td 9
141	Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Engineering - Part A, 2021, 27, 1411-1421.	1.6	9
142	Bioreactors Addressing Diabetes Mellitus. Journal of Diabetes Science and Technology, 2014, 8, 1227-1232.	1.3	8
143	Improved Estimation of Ultrasound Thermal Strain Using Pulse Inversion Harmonic Imaging. Ultrasound in Medicine and Biology, 2016, 42, 1182-1192.	0.7	8
144	Design and Fabrication of an Automatable, 3D Printed Perfusion Device for Tissue Infusion and Perfusion Engineering. Tissue Engineering - Part A, 2020, 26, 253-264.	1.6	8

#	Article	IF	CITATIONS
145	Facial Nerve Repair: Bioengineering Approaches in Preclinical Models. Tissue Engineering - Part B: Reviews, 2022, 28, 364-378.	2.5	8
146	Abnormal Vessel Architecture Persists in the Microvasculature of the Massive Weight Loss Patient. Plastic and Reconstructive Surgery, 2016, 137, 24e-30e.	0.7	7
147	Three-Dimensional Adipocyte Culture: The Next Frontier for Adipocyte Biology Discovery. Endocrinology, 2015, 156, 4375-4376.	1.4	6
148	Engineering a 3D Vascularized Adipose Tissue Construct Using a Decellularized Lung Matrix. Biomimetics, 2021, 6, 52.	1.5	6
149	Scientific Basis for the Use of Hypotonic Solutions with Ultrasonic Liposuction. Aesthetic Plastic Surgery, 2006, 30, 233-238.	0.5	4
150	The role of steroids in mesenchymal stem cell differentiation: molecular and clinical perspectives. Hormone Molecular Biology and Clinical Investigation, 2013, 14, 3-14.	0.3	4
151	Inflammatory biomarker in adipose stem cells of women with endometrial cancer. Biomarkers in Medicine, 2018, 12, 945-952.	0.6	4
152	Biodegradable silk catheters for the delivery of therapeutics across anatomical repair sites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 501-510.	1.6	4
153	Commentary. Aesthetic Surgery Journal, 2010, 30, 82-82.	0.9	3
154	Exogenous connective tissue growth factor preserves the hairâ€inductive ability of human dermal papilla cells. International Journal of Cosmetic Science, 2014, 36, 442-450.	1.2	3
155	Soft Tissue Reconstruction. Methods in Molecular Biology, 2018, 1773, 203-213.	0.4	3
156	Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. Journal of Tissue Engineering, 2021, 12, 204173142110324.	2.3	3
157	Mesenchymal and Adipose Stem Cell Strategies for Peripheral Nerve Regeneration. Pancreatic Islet Biology, 2015, , 329-360.	0.1	1
158	Controlling Hydrogel Biodegradability. , 2016, , 131-173.		1
159	Craniofacial Tissue Engineering. , 0, , 2218-2229.		1
160	Reply. Plastic and Reconstructive Surgery, 2008, 121, 345-346.	0.7	0
161	Regenerative Medicine Therapies Using Adipose-Derived Stem Cells. , 2015, , 335-344.		0

#	Article	IF	CITATIONS
163	Adipose Tissue as a Plentiful Source of Stem Cells for Regenerative Medicine Therapies. , 2016, , 241-250.		о
164	Adipose Tissue-Derived Stem Cells: Sources and Therapeutic Applications. , 2018, , 45-45.		0
165	36 A Novel Polysaccharide Derivative to Enhance Wound Healing in MRSA-Infected Porcine Partial-Thickness Burn Wound Model. Journal of Burn Care and Research, 2019, 40, S27-S28.	0.2	Ο
166	357 Wound Chambers for Porcine Wound Healing Research. Journal of Burn Care and Research, 2019, 40, S155-S156.	0.2	0
167	Adipose stem cells for peripheral nerve engineering. , 2022, , 427-457.		0
168	Biodegradable Polymers and Microspheres in Tissue Engineering. , 2004, , 149-165.		0
169	Tissue Engineering of Craniofacial Structure. , 2005, , 455-472.		Ο
170	Controlled in Vivo Degradation of Genipin Crosslinked Polyethylene Glycol Hydrogels within Osteochondral Defects. Tissue Engineering, 2006, .	4.9	0
171	Controlledin VivoDegradation of Genipin Crosslinked Polyethylene Glycol Hydrogels within Osteochondral Defects. Tissue Engineering, 2006, .	4.9	Ο
172	Estrogen sulfotransferase(est/sult1e1) promotes human adipogenesis (LB606). FASEB Journal, 2014, 28, LB606.	0.2	0
173	Nerve Guides: Multi-Channeled Biodegradable Polymer Composite. , 0, , 5658-5677.		0
174	Nerve Guides: Multi-Channeled Biodegradable Polymer Composite. , 2017, , 1235-1254.		0