Marcello Rubens Barsi Andreeta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser heated pedestal growth of Al2O3/GdAlO3 eutectic fibers. Journal of Crystal Growth, 2002, 234, 782-785.	1.5	46
2	Growth of single-crystal photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal growth method. Journal of Crystal Growth, 1994, 137, 528-534.	1.5	32
3	Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses. Journal of Non-Crystalline Solids, 2010, 356, 2942-2946.	3.1	32
4	Viscosity and liquidusâ€based predictor of glassâ€forming ability of oxide glasses. Journal of the American Ceramic Society, 2020, 103, 921-932.	3.8	29
5	Thermal analysis and structural investigation of different dental composite resins. Journal of Thermal Analysis and Calorimetry, 2008, 94, 791-796.	3.6	27
6	Polarized Micro-Raman Scattering of CaNb ₂ O ₆ Single Crystal Fibers Obtained by Laser Heated Pedestal Growth. Crystal Growth and Design, 2010, 10, 1569-1573.	3.0	25
7	Polarized Micro-Raman Spectroscopy of Ba(Mg1/3Nb2/3)O3 Single Crystal Fibers. Crystal Growth and Design, 2005, 5, 1457-1462.	3.0	24
8	Anisotropy on SrTiO3 templated textured PMN–PT monolithic ceramics. Journal of the European Ceramic Society, 2007, 27, 2463-2469.	5.7	21
9	Multiwavelength laser action of Nd3+:YAlO3 single crystals grown by the laser heated pedestal growth method. Optical Materials, 2004, 24, 643-650.	3.6	20
10	Laser heated pedestal growth of orthorhombic SrHfO3 single crystal fiber. Journal of Crystal Growth, 1999, 200, 621-624.	1.5	19
11	Two-wave mixing in photorefractive Bi_12SiO_20 fibers. Optics Letters, 1993, 18, 690.	3.3	17
12	Micro Far-Infrared Reflectivity of CaNb ₂ O ₆ Single Crystal Fibers Grown by the Laser-Heated Pedestal Growth Technique. Crystal Growth and Design, 2011, 11, 3472-3478.	3.0	16
13	Dynamics of the incorporation of Co into the wurtzite ZnO matrix and its magnetic properties. Journal of Alloys and Compounds, 2015, 637, 407-417.	5.5	16
14	The role of quantum confinement and crystalline structure on excitonic lifetimes in silicon nanoclusters. Journal of Applied Physics, 2010, 108, 013105.	2.5	15
15	Optical activity measurements in the photorefractive Bi12TiO20 single crystal fibers. Optical Materials, 1998, 10, 201-205.	3.6	14
16	Raman and Infrared Phonon Features in a Designed Cubic Polymorph of CaTa ₂ O ₆ . Crystal Growth and Design, 2011, 11, 5567-5573.	3.0	14
17	Influence of curing protocol and ceramic composition on the degree of conversion of resin cement. Journal of Applied Oral Science, 2017, 25, 700-707.	1.8	14
18	Bismuth germanate films prepared by Pechini method. Optical Materials, 2010, 32, 1286-1290.	3.6	13

#	Article	IF	CITATIONS
19	Laser-Heated Pedestal Growth of Oxide Fibers. , 2010, , 393-432.		13
20	Thermal gradient control at the solid–liquid interface in the laser-heated pedestal growth technique. Journal of Crystal Growth, 2002, 234, 759-761.	1.5	12
21	Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2laser. Journal of Micromechanics and Microengineering, 2011, 21, 025004.	2.6	12
22	Automatic diameter control system applied to the laser heated pedestal growth technique. Materials Research, 2003, 6, 107-110.	1.3	11
23	Laser induced modification on 40BaO–45B2O3–15TiO2 glass composition. Journal of Non-Crystalline Solids, 2006, 352, 3398-3403.	3.1	11
24	Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality. Materials Research, 1998, 1, 11-17.	1.3	11
25	Laser-heated pedestal growth of colorless single crystal fiber. Journal of Crystal Growth, 2005, 275, e757-e761.	1.5	10
26	Transparent and inclusion-free RE1â^'xLaxVO4 (RE=Gd, Y) single crystal fibers grown by LHPG technique. Journal of Crystal Growth, 2006, 291, 117-122.	1.5	10
27	1.8μm emission and excited state absorption in LHPG grown Gd0.8La0.2VO4:Tm3+ single crystal fibers for miniature lasers. Optical Materials, 2006, 28, 551-555.	3.6	10
28	Structural and optical properties on thulium-doped LHPG-grown Ta2O5 fibres. Microelectronics Journal, 2009, 40, 309-312.	2.0	10
29	YSZ/Al2O3 multilayer thick films deposited by spin coating using ceramic suspensions on Al2O3 polycrystalline substrate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 60-66.	3.5	10
30	The influence of temperature gradients on structural perfection of single-crystal sillenite fibers grown by the LHPG method. Optical Materials, 1995, 4, 521-527.	3.6	9
31	Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3. Journal of Crystal Growth, 1997, 177, 52-56.	1.5	9
32	Microwave dielectric relaxation process in doped-incipient ferroelectrics. Journal of the European Ceramic Society, 2005, 25, 2563-2566.	5.7	9
33	Resonance Raman spectroscopy of NdAlO3 single-crystal fibers grown by the laser-heated pedestal growth technique. Vibrational Spectroscopy, 2014, 73, 144-149.	2.2	9
34	Physical properties of single-crystalline fibers of the colossal-magnetoresistance manganite La0.7Ca0.3MnO3. Applied Physics Letters, 2003, 83, 3135-3137.	3.3	8
35	Innovative Design for the Enhancement of Lithium Lanthanum Titanate Electrolytes. Crystal Growth and Design, 2019, 19, 4897-4901.	3.0	8
36	Photoluminescence spectrum of rare earth doped zirconia fibre and power excitation dependence. Radiation Effects and Defects in Solids, 1999, 149, 153-157.	1.2	7

#	Article	IF	CITATIONS
37	Growth and characterization of Nd-doped SBN single crystal fibers. Applied Physics A: Materials Science and Processing, 2004, 78, 1037-1042.	2.3	7
38	Surface modification and crystallization of the BaO–B2O3–SiO2 glassy system using CO2 laser irradiation. Journal of Non-Crystalline Solids, 2008, 354, 279-283.	3.1	7
39	Effect of Eu2O3 doping on Ta2O5 crystal growth by the laser-heated pedestal technique. Journal of Crystal Growth, 2010, 313, 62-67.	1.5	7
40	Electron spin resonance study of Fe3+ in LiNbO3 single crystals: Bulk and fibres. Solid State Communications, 1997, 103, 61-64.	1.9	6
41	Near-infrared and upconversion properties of neodymium-doped RE0.8La0.2VO4(RE Â Y, Gd) single-crystal fibres grown by the laser-heated pedestal growth technique. Journal of Physics Condensed Matter, 2002, 14, 13889-13897.	1.8	6
42	Microwave dielectric permittivity and photoluminescence of Eu2O3 doped laser heated pedestal growth Ta2O5 fibers. Applied Physics Letters, 2008, 92, 252904.	3.3	6
43	Simple optical apparatus for trepanning and percussion microdrilling using pulsed green Nd:YAG laser. Laser Physics, 2009, 19, 2045-2049.	1.2	5
44	Growth and magnetic properties of bulk electron doped La _{0.7} Ce _{0.3} MnO ₃ manganites. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1704-1707.	1.8	5
45	On the upconversion emission of rare earth doped zirconia fiber. Radiation Effects and Defects in Solids, 1998, 147, 77-81.	1.2	4
46	Polymorphic-Induced Transformations in CaTa ₂ O ₆ Single-Crystal Fibers Obtained by Laser-Heated Pedestal Growth. Crystal Growth and Design, 2013, 13, 5289-5294.	3.0	4
47	Microstructural, structural and optical properties of nanoparticles of PbO-CrO3 pigment synthesized by a soft route. Ceramica, 2015, 61, 118-125.	0.8	4
48	Lithium diborate glass for high-dose dosimetry using the UV-Vis and FTIR spectrophotometry techniques. Radiation Measurements, 2017, 106, 225-228.	1.4	4
49	Characterization of lithium diborate, sodium diborate and commercial soda-lime glass exposed to gamma radiation via linearity analyses. Radiation Physics and Chemistry, 2019, 155, 133-137.	2.8	4
50	Solidificação direcional do eutético Al2O3/GdAlO3 por fusão a laser. Ceramica, 2002, 48, 29-33.	0.8	3
51	Periodic doping in single crystal fibers grown by laser-heated pedestal growth technique. Journal of Crystal Growth, 2002, 242, 395-399.	1.5	3
52	Brittle and ductile removal modes observed during diamond turning of carbon nanotube composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223, 1-8.	2.4	3
53	Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa ₂ O ₆ single crystal fibre. Materials Research Express, 2014, 1, 016304.	1.6	3
54	Surface treatment of dental porcelain: CO2 laser as an alternative to oven glaze. Lasers in Medical Science, 2015, 30, 661-667.	2.1	3

#	Article	IF	CITATIONS
55	Oriented Crystal Growth of La _{0.557} Li _{0.330} TiO ₃ in Bulk Ceramics Induced by LaAlO ₃ Single-Crystal Fibers. Crystal Growth and Design, 2021, 21, 2093-2100.	3.0	3
56	Bubble generation in refractory porous plugs: The role of the ceramic surface composition. International Journal of Ceramic Engineering & Science, 2022, 4, 199-210.	1.2	3
57	The relation between temperature gradients and structural perfection of single-crystal Bi12SiO20 and Bi12TiO20 fibers grown by the LHPG method. Optical Materials, 1995, 4, 433-436.	3.6	2
58	SrTiO3 single crystal fibers grown by laser-heated pedestal growth (LHPG). Ferroelectrics, 1996, 186, 141-144.	0.6	2
59	Laser-heated crystallization of eutectic composition glass. CrystEngComm, 2019, 21, 3915-3918.	2.6	2
60	Sintering dental porcelain with CO2 laser: porosity and mechanical characterization. Ciência OdontolA³gica Brasileira, 2013, 16, .	0.0	2
61	Microstructure of single-crystal sillenite fibers. Radiation Effects and Defects in Solids, 1995, 134, 209-211.	1.2	1
62	Current-induced Conductance Jumps in Mechanically Controllable Junctions of La0.7Sr0.3MnO3 Manganites. European Physical Journal D, 2004, 54, 39-42.	0.4	1
63	CO2 laser for dental alumina ceramic framework welding. Brazilian Dental Science, 2019, 22, 520-527.	0.4	1
64	Superficial treatment of porcelain with laser: Diffractometry and mechanical characterization. Dental Materials, 2012, 28, e35-e36.	3.5	0
65	Single-crystal growth of Sr2RuO4by laser-heated pedestal growth (LHPG). Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C512-C512.	0.3	0