
Michael Fine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432413/publications.pdf Version: 2024-02-01

MICHAEL FINE

#	Article	IF	CITATIONS
1	Insights into the Irritating Mechanisms of TRPA1 Revealed by Cryo-EM. Neuron, 2021, 109, 194-196.	8.1	1
2	Atomic insights into ML-SI3 mediated human TRPML1 inhibition. Structure, 2021, 29, 1295-1302.e3.	3.3	14
3	TMEM16F and dynamins control expansive plasma membrane reservoirs. Nature Communications, 2021, 12, 4990.	12.8	9
4	On the existence of endocytosis driven by membrane phase separations. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183007.	2.6	25
5	Structural insights into group II TRP channels. Cell Calcium, 2020, 86, 102107.	2.4	13
6	TRP Channel: The structural era. Cell Calcium, 2020, 87, 102191.	2.4	4
7	Hypertrophy of human embryonic stem cell–derived cardiomyocytes supported by positive feedback between Ca2+ and diacylglycerol signals. Pflugers Archiv European Journal of Physiology, 2019, 471, 1143-1157.	2.8	11
8	TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking. Scientific Reports, 2019, 9, 619.	3.3	35
9	The regulatory mechanism of mammalian TRPML s revealed by cryo―EM. FEBS Journal, 2018, 285, 2579-2585.	4.7	7
10	Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. Journal of General Physiology, 2018, 150, 211-224.	1.9	49
11	Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nature Communications, 2018, 9, 4192.	12.8	67
12	Human TRPML1 channel structures in open and closed conformations. Nature, 2017, 550, 366-370.	27.8	109
13	Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor. Biosensors, 2016, 6, 11.	4.7	19
14	Conservation of the oligomeric state of native VDAC1 in detergent micelles. Biochimie, 2016, 127, 163-172.	2.6	3
15	Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligandâ€Based Virtual Screening Method. Angewandte Chemie - International Edition, 2015, 54, 14748-14752.	13.8	40
16	Rapid Method to Express and Purify Human Membrane Protein Using the Xenopus Oocyte System for Functional and Low-Resolution Structural Analysis. Methods in Enzymology, 2015, 556, 241-265.	1.0	7
17	Expression, purification, and projection structure by single particle electron microscopy of functional human TRPM4 heterologously expressed in Xenopus laevis oocytes. Protein Expression and Purification, 2014, 95, 169-176.	1.3	7
18	Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System. PLoS ONE, 2014, 9, e108852.	2.5	34

MICHAEL FINE

#	Article	IF	CITATIONS
19	Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters. American Journal of Physiology - Cell Physiology, 2013, 305, C481-C491.	4.6	34
20	Toward an Understanding of the Complete NCX1 Lifetime in the Cardiac Sarcolemma. Advances in Experimental Medicine and Biology, 2013, 961, 345-352.	1.6	2
21	Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. ELife, 2013, 2, e01293.	6.0	65
22	Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle. ELife, 2013, 2, e01295.	6.0	66
23	Mechanistic analysis of massive endocytosis in relation to functionally defined surface membrane domains. Journal of General Physiology, 2011, 137, 155-172.	1.9	37
24	Massive calcium–activated endocytosis without involvement of classical endocytic proteins. Journal of General Physiology, 2011, 137, 111-132.	1.9	90
25	Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains. Journal of General Physiology, 2011, 137, 137-154.	1.9	38