
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432254/publications.pdf Version: 2024-02-01

WEIHLIA CHAN

#	Article	IF	CITATIONS
1	Rapid detection of novel coronavirus SARS-CoV-2 by RT-LAMP coupled solid-state nanopores. Biosensors and Bioelectronics, 2022, 197, 113759.	5.3	18
2	An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer. Methods in Molecular Biology, 2022, 2393, 257-278.	0.4	3
3	Sample-to-Answer Microfluidic Nucleic Acid Testing (NAT) on Lab-on-a-Disc for Malaria Detection at Point of Need. Methods in Molecular Biology, 2022, 2393, 297-313.	0.4	5
4	Rolling Circle Amplification-Coupled Glass Nanopore Counting of Mild Traumatic Brain Injury-Related Salivary miRNAs. Analytical Chemistry, 2022, 94, 3865-3871.	3.2	6
5	Figure of Merit for CRISPR-Based Nucleic Acid-Sensing Systems: Improvement Strategies and Performance Comparison. ACS Sensors, 2022, 7, 900-911.	4.0	16
6	Fingerpick Blood-Based Nucleic Acid Testing on A USB Interfaced Device towards HIV self-testing. Biosensors and Bioelectronics, 2022, 209, 114255.	5.3	20
7	On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 13383-13391.	4.0	5
8	CRISPR-based detection of SARS-CoV-2: A review from sample to result. Biosensors and Bioelectronics, 2021, 178, 113012.	5.3	94
9	Nanofluidic charged-coupled devices for controlled DNA transport and separation. Nanotechnology, 2021, 32, 345501.	1.3	4
10	Detection of SARS-CoV-2 with Solid-State CRISPR-Cas12a-Assisted Nanopores. Nano Letters, 2021, 21, 8393-8400.	4.5	42
11	Microfluidic high-throughput single-cell mechanotyping: Devices and applications. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, .	1.7	10
12	Noise in nanopore sensors: Sources, models, reduction, and benchmarking. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 9-17.	1.7	37
13	Direct Observation of Redox-Induced Bubble Generation and Nanopore Formation Dynamics in Controlled Dielectric Breakdown. ACS Applied Electronic Materials, 2020, 2, 2954-2960.	2.0	10
14	Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sensors, 2020, 5, 1273-1280.	4.0	88
15	Foreword to the special issue on micro/nano biosensors. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 1.	1.7	1
16	Confocal scanning photoluminescence for mapping electron and photon beam-induced microscopic changes in SiN <i> _x </i> during nanopore fabrication. Nanotechnology, 2020, 31, 395202.	1.3	6
17	Microfluidic deformability-activated sorting of single particles. Microsystems and Nanoengineering, 2020, 6, 11.	3.4	13
18	Calibration-Free Nanopore Digital Counting of Single Molecules. Analytical Chemistry, 2019, 91, 11178-11184.	3.2	18

#	Article	IF	CITATIONS
19	Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis. ACS Sensors, 2019, 4, 1957-1963.	4.0	12
20	Quantitative Analysis of Factors Affecting the Event Rate in Glass Nanopore Sensors. ACS Sensors, 2019, 4, 3007-3013.	4.0	12
21	Non-Centrifugal Microfluidic Nucleic Acid Testing on Lab-on-a-Disc. , 2019, , .		0
22	False Negative And False Positive Free Nanopore Fabrication Via Adaptive Learning Of The Controlled Dielectric Breakdown. , 2019, , .		2
23	Loop-Mediated Isothermal Amplification-Coupled Glass Nanopore Counting Toward Sensitive and Specific Nucleic Acid Testing. Nano Letters, 2019, 19, 7927-7934.	4.5	32
24	Microfluidic multiple cross-correlated Coulter counter for improved particle size analysis. Sensors and Actuators B: Chemical, 2019, 296, 126615.	4.0	22
25	Nanopore Digital Counting of Amplicons for Ultrasensitive Electronic DNA Detection. , 2019, , .		0
26	Calibration-Free Electrical Quantification of Single Molecules Using Nanopore Digital Counting. , 2019, , .		0
27	Live Demonstration: Sample-to-Answer Nucleic Acid Testing Device for Point-of-Care Applications. , 2019, , .		0
28	Time-division multiplexed resistive pulse sensor on a microfluidic chip. , 2019, , .		0
29	High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore. Nanotechnology, 2019, 30, 095502.	1.3	23
30	Older Adults' Utilization of Community Resources Targeting Fall Prevention and Physical Activity. Gerontologist, The, 2019, 59, 436-446.	2.3	12
31	Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening. Biosensors and Bioelectronics, 2018, 115, 83-90.	5.3	46
32	Kirigamiâ€Inspired 3D Organic Lightâ€Emitting Diode (OLED) Lighting Concepts. Advanced Materials Technologies, 2018, 3, 1800067.	3.0	11
33	High-throughput and label-free parasitemia quantification and stage determination for plasmodium falciparum-infected red blood cells. , 2017, , .		0
34	Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid. Methods in Molecular Biology, 2017, 1572, 189-203.	0.4	0
35	High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells. Biosensors and Bioelectronics, 2017, 98, 408-414.	5.3	26
36	Arbitrarily Accessible 3D Microfluidic Device for Combinatorial High-Throughput Drug Screening. Sensors, 2016, 16, 1616.	2.1	19

#	Article	IF	CITATIONS
37	Mobile all-in-one malaria molecular diagnosis for field deployment in resource-limited areas. , 2016, , .		Ο
38	A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab on A Chip, 2016, 16, 4341-4349.	3.1	39
39	Older Adults' Experiences Using a Commercially Available Monitor to Self-Track Their Physical Activity. JMIR MHealth and UHealth, 2016, 4, e35.	1.8	117
40	Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification. Scientific Reports, 2015, 5, 13795.	1.6	28
41	Direct Observation of Charge Inversion in Divalent Nanofluidic Devices. Nano Letters, 2015, 15, 5046-5051.	4.5	74
42	Digital droplet ELOHA for nucleic acid molecule counting and analysis. , 2015, , .		0
43	Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology, 2014, 25, 122001.	1.3	71
44	Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosensors and Bioelectronics, 2014, 51, 225-231.	5.3	69
45	Quantitative probing of surface charges at dielectric–electrolyte interfaces. Lab on A Chip, 2013, 13, 1431.	3.1	25
46	Fabrication and characterization of field effect reconfigurable nanofluidic ionic diodes: Towards digitally-programmed manipulation of biomolecules. , 2012, , .		0
47	Electric Field Modulation of the Membrane Potential in Solid-State Ion Channels. Nano Letters, 2012, 12, 6441-6447.	4.5	47
48	Tunable Aqueous Virtual Micropore. Small, 2012, 8, 907-912.	5.2	8
49	Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2011, 2, 506.	5.8	211
50	Non-vanishing ponderomotive AC electrophoretic effect for particle trapping. Nanotechnology, 2011, 22, 245103.	1.3	7
51	Paul trapping of charged particles in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9326-9330.	3.3	48
52	A long DNA segment in a linear nanoscale Paul trap. Nanotechnology, 2010, 21, 015103.	1.3	18
53	Multilevel resistive switching with ionic and metallic filaments. Applied Physics Letters, 2009, 94, .	1.5	152
54	Resistive switching characteristics of MnO _{<i>x</i>} -based ReRAM. Journal Physics D: Applied Physics, 2009, 42, 055112.	1.3	67

#	Article	IF	CITATIONS
55	Resistance Switching Characteristics of Zirconium Oxide Containing Gold Nanocrystals for Nonvolatile Memory Applications. Journal of Nanoscience and Nanotechnology, 2009, 9, 723-726.	0.9	1
56	Charge storage characteristics of metal-induced nanocrystalline in erbium-doped amorphous silicon films. Thin Solid Films, 2008, 516, 7657-7660.	0.8	3
57	Resistive switching memory effect of ZrO2 films with Zr+ implanted. Applied Physics Letters, 2008, 92, .	1.5	235
58	Nonpolar Nonvolatile Resistive Switching in Cu Doped \$hbox{ZrO}_{2}\$. IEEE Electron Device Letters, 2008, 29, 434-437.	2.2	260
59	On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters, 2008, 93, .	1.5	190
60	Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application. Journal of Applied Physics, 2008, 104, .	1.1	39
61	Excellent resistive switching characteristics of Cu doped ZrO <inf>2</inf> and its 64 bit cross-point integration. , 2008, , .		1
62	Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. Journal Physics D: Applied Physics, 2008, 41, 135111.	1.3	51
63	Nonvolatile resistive switching characteristics of HfO2 with Cu doping. Materials Research Society Symposia Proceedings, 2008, 1071, 1.	0.1	3
64	Comparison of discrete-storage nonvolatile memories: advantage of hybrid method for fabrication of Au nanocrystal nonvolatile memory. Journal Physics D: Applied Physics, 2008, 41, 035109.	1.3	8
65	Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. Journal Physics D: Applied Physics, 2007, 40, 2754-2758.	1.3	56
66	Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Applied Physics Letters, 2007, 91, 062111.	1.5	182
67	Analysis of Charge Retention Characteristics for Metal and Semiconductor Nanocrystal Non-volatile Memories. , 2007, , .		0
68	Modeling of retention characteristics for metal and semiconductor nanocrystal memories. Solid-State Electronics, 2007, 51, 806-811.	0.8	32