Carlos A Coello Coello

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6432130/carlos-a-coello-coello-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

463 papers

22,117 citations

58 h-index

141 g-index

508 ext. papers

26,091 ext. citations

4.2 avg, IF

7.58 L-index

#	Paper	IF	Citations
463	An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It. <i>Adaptation, Learning, and Optimization</i> , 2022 , 65-88	0.7	Ο
462	Preference incorporation into many-objective optimization: An Ant colony algorithm based on interval outranking. <i>Swarm and Evolutionary Computation</i> , 2022 , 69, 101024	9.8	3
461	Multi-objective Ant Colony Optimization: An Updated Review of Approaches and Applications. <i>Intelligent Systems Reference Library</i> , 2022 , 1-32	0.8	
460	VSD-MOEA: A Dominance-Based Multi-Objective Evolutionary Algorithm with Explicit Variable Space Diversity Management. <i>Evolutionary Computation</i> , 2021 , 1-24	4.3	0
459	. IEEE Transactions on Evolutionary Computation, 2021 , 1-1	15.6	O
458	Adaptive Multilevel Prediction Method for Dynamic Multimodal Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 463-477	15.6	2
457	Multimodal Multiobjective Evolutionary Optimization With Dual Clustering in Decision and Objective Spaces. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 130-144	15.6	22
456	Decomposition-based multiobjective optimization with bicriteria assisted adaptive operator selection. <i>Swarm and Evolutionary Computation</i> , 2021 , 60, 100790	9.8	5
455	A parallel naive approach for non-dominated sorting: a theoretical study considering PRAM CREW model. <i>Soft Computing</i> , 2021 , 25, 73-84	3.5	O
454	An Elite Gene Guided Reproduction Operator for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 765-778	10.2	7
453	The Importance of Diversity in Multi-objective Evolutionary Algorithms. <i>Algorithms for Intelligent Systems</i> , 2021 , 291-298	0.5	
452	An Ensemble Surrogate-based Framework for Expensive Multiobjective Evolutionary Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	2
451	Multi-Objective Evolutionary Algorithms: Past, Present, and Future. <i>Springer Optimization and Its Applications</i> , 2021 , 137-162	0.4	O
450	Enhancing Robustness and Resilience of Multiplex Networks Against Node-Community Cascading Failures. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-14	7.3	1
449	AdaSwarm: Augmenting Gradient-Based Optimizers in Deep Learning With Swarm Intelligence. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2021 , 1-12	4.1	8
448	A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. <i>Swarm and Evolutionary Computation</i> , 2021 , 64, 100888	9.8	33
447	On the Effect of the Cooperation of Indicator-Based Multiobjective Evolutionary Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 681-695	15.6	6

(2020-2021)

446	A Novel Parametric benchmark generator for dynamic multimodal optimization. <i>Swarm and Evolutionary Computation</i> , 2021 , 65, 100924	9.8	3	
445	Uniform mixture design via evolutionary multi-objective optimization. <i>Swarm and Evolutionary Computation</i> , 2021 , 100979	9.8	1	
444	Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey. <i>Swarm and Evolutionary Computation</i> , 2021 , 67, 100960	9.8	3	
443	COARSE-EMOA: An indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems. <i>Swarm and Evolutionary Computation</i> , 2021 , 67, 100983	9.8	1	
442	An Overview of Pair-Potential Functions for Multi-objective Optimization. <i>Lecture Notes in Computer Science</i> , 2021 , 401-412	0.9	2	
441	The Influence of Swarm Topologies in Many-Objective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2021 , 387-398	0.9		
440	Pro-Reactive Approach for Project Scheduling Under Unpredictable Disruptions. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	1	
439	Evolutionary approach for large-Scale mine scheduling. <i>Information Sciences</i> , 2020 , 523, 77-90	7.7	6	
438	Hybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methods. <i>Swarm and Evolutionary Computation</i> , 2020 , 54, 100652	9.8	7	
437	Using evolutionary computation to infer the decision maker preference model in presence of imperfect knowledge: A case study in portfolio optimization. <i>Swarm and Evolutionary Computation</i> , 2020 , 54, 100648	9.8	10	
436	SNEGAN: Signed Network Embedding by Using Generative Adversarial Nets. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2020 , 1-14	4.1	1	
435	Indicator-based Multi-objective Evolutionary Algorithms. ACM Computing Surveys, 2020, 53, 1-35	13.4	37	
434	A Self-Guided Reference Vector Strategy for Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2020 ,	10.2	4	
433	Cooperative Co-Evolutionary Genetic Programming for High Dimensional Problems. <i>Lecture Notes in Computer Science</i> , 2020 , 48-62	0.9	2	
432	Generation of New Scalarizing Functions Using Genetic Programming. <i>Lecture Notes in Computer Science</i> , 2020 , 3-17	0.9	0	
431	A SHADE-Based Algorithm for Large Scale Global Optimization. <i>Lecture Notes in Computer Science</i> , 2020 , 650-663	0.9	O	
430	An Ensemble Indicator-Based Density Estimator for Evolutionary Multi-objective Optimization. <i>Lecture Notes in Computer Science</i> , 2020 , 201-214	0.9	2	
429	A Study of Swarm Topologies and Their Influence on the Performance of Multi-Objective Particle Swarm Optimizers. <i>Lecture Notes in Computer Science</i> , 2020 , 285-298	0.9	1	

428	Cost-Aware Robust Control of Signed Networks by Using a Memetic Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 4430-4443	10.2	11
427	Approximating Complex Pareto Fronts With Predefined Normal-Boundary Intersection Directions. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 809-823	15.6	6
426	Evolutionary Black-Box Topology Optimization: Challenges and Promises. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 613-633	15.6	10
425	Riesz s-energy-based Reference Sets for Multi-Objective optimization 2020 ,		5
424	A spatial land-use planning support system based on game theory. Land Use Policy, 2020, 99, 105013	5.6	13
423	A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	3
422	A Hybrid Leader Selection Strategy for Many-Objective Particle Swarm Optimization. <i>IEEE Access</i> , 2020 , 8, 189527-189545	3.5	7
421	A Parallel Island Model for Hypervolume-Based Many-Objective Optimization. <i>Studies in Computational Intelligence</i> , 2020 , 247-273	0.8	
420	Dynamic urban land-use change management using multi-objective evolutionary algorithms. <i>Soft Computing</i> , 2020 , 24, 4165-4190	3.5	8
419	Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. <i>Complex & Intelligent Systems</i> , 2020 , 6, 221-236	7.1	57
418	Evolutionary Algorithm for Project Scheduling under Irregular Resource Changes 2019,		3
417	An Approach for Non-domination Level Update Problem in Steady-State Evolutionary Algorithms With Parallelism 2019 ,		1
416	Convergence and diversity analysis of indicator-based multi-objective evolutionary algorithms 2019 ,		5
415	The gEdominance Relation for Preference-Based Evolutionary Multi-Objective Optimization 2019,		2
414	On the construction of pareto-compliant quality indicators 2019 ,		4
413	A novel multi-objective immune algorithm with a decomposition-based clonal selection. <i>Applied Soft Computing Journal</i> , 2019 , 81, 105490	7.5	19
412	Bio-inspired computation: Where we stand and what's next. <i>Swarm and Evolutionary Computation</i> , 2019 , 48, 220-250	9.8	264
411	A novel multi-objective evolutionary algorithm with dynamic decomposition strategy. <i>Swarm and Evolutionary Computation</i> , 2019 , 48, 182-200	9.8	14

(2019-2019)

410	A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on \$epsilon\$ -Dominance. <i>IEEE Access</i> , 2019 , 7, 18267-18283	3.5	6
409	Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model. <i>Journal of Heuristics</i> , 2019 , 25, 455-483	1.9	3
408	A novel approach to select the best portfolio considering the preferences of the decision maker. <i>Swarm and Evolutionary Computation</i> , 2019 , 46, 140-153	9.8	17
407	Evolutionary-based tailoring of synthetic instances for the Knapsack problem. <i>Soft Computing</i> , 2019 , 23, 12711-12728	3.5	11
406	A Review of Features and Limitations of Existing Scalable Multiobjective Test Suites. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 130-142	15.6	22
405	A Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 391-405	15.6	45
404	Parallel Best Order Sort for Non-dominated Sorting: A Theoretical Study Considering the PRAM-CREW Model 2019 ,		1
403	On the Cooperation of Multiple Indicator-based Multi-Objective Evolutionary Algorithms 2019,		4
402	Operational decomposition for large scale multi-objective optimization problems 2019,		4
401	Divide-and-conquer based non-dominated sorting with Reduced Comparisons. <i>Swarm and Evolutionary Computation</i> , 2019 , 51, 100580	9.8	1
400	CRI-EMOA: A Pareto-Front Shape Invariant Evolutionary Multi-objective Algorithm. <i>Lecture Notes in Computer Science</i> , 2019 , 307-318	0.9	5
399	A hybridized angle-encouragement-based decomposition approach for many-objective optimization problems. <i>Applied Soft Computing Journal</i> , 2019 , 78, 355-372	7.5	8
398	Reliable Link Inference for Network Data With Community Structures. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3347-3361	10.2	13
397	Handling uncertainty through confidence intervals in portfolio optimization. <i>Swarm and Evolutionary Computation</i> , 2019 , 44, 774-787	9.8	14
396	A divide-and-conquer based efficient non-dominated sorting approach. <i>Swarm and Evolutionary Computation</i> , 2019 , 44, 748-773	9.8	11
395	An Effective Ensemble Framework for Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 645-659	15.6	15
394	Multi-method based algorithm for multi-objective problems under uncertainty. <i>Information Sciences</i> , 2019 , 481, 81-109	7.7	10
393	Fuzzy Rule-Based Design of Evolutionary Algorithm for Optimization. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 301-314	10.2	8

392	Evolutionary many-objective optimization based on linear assignment problem transformations. <i>Soft Computing</i> , 2018 , 22, 5491-5512	3.5	5
391	Enhancing Selection Hyper-Heuristics via Feature Transformations. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 30-41	5.6	13
390	MC2ESVM: Multiclass Classification Based on Cooperative Evolution of Support Vector Machines. <i>IEEE Computational Intelligence Magazine</i> , 2018 , 13, 18-29	5.6	13
389	Particle Swarm Optimization With a Balanceable Fitness Estimation for Many-Objective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 32-46	15.6	116
388	Finding short and implementation-friendly addition chains with evolutionary algorithms. <i>Journal of Heuristics</i> , 2018 , 24, 457-481	1.9	2
387	Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 851-865	15.6	87
386	A Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 2388-2401	10.2	25
385	Towards a more general many-objective evolutionary optimizer using multi-indicator density estimation 2018 ,		1
384	A multi-objective evolutionary hyper-heuristic based on multiple indicator-based density estimators 2018 ,		8
383	Constraint-handling techniques used with evolutionary algorithms 2018,		5
382	GBOS: Generalized Best Order Sort algorithm for non-dominated sorting. <i>Swarm and Evolutionary Computation</i> , 2018 , 43, 244-264	9.8	13
381	Multi-objective Optimization 2018 , 1-28		3
380	Tailoring Instances of the 1D Bin Packing Problem for Assessing Strengths and Weaknesses of Its Solvers. <i>Lecture Notes in Computer Science</i> , 2018 , 373-384	0.9	6
379	An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. <i>Information Sciences</i> , 2018 , 430-431, 46-64	7.7	40
378	Adaptation of operators and continuous control parameters in differential evolution for constrained optimization. <i>Soft Computing</i> , 2018 , 22, 6595-6616	3.5	11
377	Multiobjective Personalized Recommendation Algorithm Using Extreme Point Guided Evolutionary Computation. <i>Complexity</i> , 2018 , 2018, 1-18	1.6	13
376	Collaborative and Adaptive Strategies of Different Scalarizing Functions in MOEA/D 2018,		1
375	P-ENS: Parallelism in Efficient Non-Dominated Sorting 2018 ,		2

374	Multi-objective Optimization 2018 , 177-204		2
373	A Cooperative Opposite-Inspired Learning Strategy for Ant-Based Algorithms. <i>Lecture Notes in Computer Science</i> , 2018 , 317-324	0.9	1
372	Towards a More General Many-objective Evolutionary Optimizer. <i>Lecture Notes in Computer Science</i> , 2018 , 335-346	0.9	4
371	Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm. <i>Lecture Notes in Computer Science</i> , 2018 , 372-383	0.9	
370	Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation. <i>Lecture Notes in Computer Science</i> , 2018 , 298-310	0.9	3
369	An improved version of a reference-based multi-objective evolutionary algorithm based on IGD + 2018 ,		2
368	Advances in Evolutionary Multi-objective Optimization. <i>Swarm and Evolutionary Computation</i> , 2018 , 40, 155-157	9.8	2
367	Fundamentals of Evolutionary Optimization: Single- and Multiobjective Problems 2018, 1-16		О
366	A Multiobjective Teaching-Learning Algorithm for Power Losses Reduction in Power Systems 2018 , 505	5-542	1
365	An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. <i>Soft Computing</i> , 2017 , 21, 861-884	3.5	11
364	Comparison of metamodeling techniques in evolutionary algorithms. Soft Computing, 2017, 21, 5647-56	5 63 5	33
363	A new indicator-based many-objective ant colony optimizer for continuous search spaces. <i>Swarm Intelligence</i> , 2017 , 11, 71-100	3	23
362	An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2794-2808	10.2	58
361	. IEEE Transactions on Evolutionary Computation, 2017 , 21, 863-877	15.6	36
360	Sequence-Based Deterministic Initialization for Evolutionary Algorithms. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2911-2923	10.2	13
359	Constraint-handling techniques used with evolutionary algorithms 2017,		4
358	A hyper-heuristic of scalarizing functions 2017 ,		9
357	Consolidated optimization algorithm for resource-constrained project scheduling problems. <i>Information Sciences</i> , 2017 , 418-419, 346-362	7.7	43

356	Recent Results and Open Problems in Evolutionary Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2017 , 3-21	0.9	6
355	Improving hyper-heuristic performance through feature transformation 2017,		5
354	Evolutionary multilabel hyper-heuristic design 2017,		2
353	Applying automatic heuristic-filtering to improve hyper-heuristic performance 2017,		2
352	Improving the integration of the IGD+ indicator into the selection mechanism of a Multi-objective Evolutionary Algorithm 2017 ,		4
351	Incorporation of implicit decision-maker preferences in multi-objective evolutionary optimization using a multi-criteria classification method. <i>Applied Soft Computing Journal</i> , 2017 , 50, 48-57	7.5	21
350	Generalized Differential Evolution for Numerical and Evolutionary Optimization. <i>Studies in Computational Intelligence</i> , 2017 , 253-279	0.8	6
349	An Overview of Weighted and Unconstrained Scalarizing Functions. <i>Lecture Notes in Computer Science</i> , 2017 , 499-513	0.9	15
348	The directed search method for multi-objective memetic algorithms. <i>Computational Optimization and Applications</i> , 2016 , 63, 305-332	1.4	38
347	MONSS: A multi-objective nonlinear simplex search approach. Engineering Optimization, 2016, 48, 16-3	8 2	11
346	Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. <i>Computer Journal</i> , 2016 , 59, 777-792	1.3	6
345	iMOACO(_mathbb {R}): A New Indicator-Based Multi-objective Ant Colony Optimization Algorithm for Continuous Search Spaces. <i>Lecture Notes in Computer Science</i> , 2016 , 389-398	0.9	1
344			
211	Constraint-Handling Techniques used with Evolutionary Algorithms 2016,		11
343	Constraint-Handling Techniques used with Evolutionary Algorithms 2016 , \$\beta\$-MOEA: A new multi-objective evolutionary algorithm based on the \$\bar{p}\$ indicator 2016 ,		5
		7.7	
343	β-MOEA: A new multi-objective evolutionary algorithm based on the β indicator 2016 , Adaptive composite operator selection and parameter control for multiobjective evolutionary	7·7 10.2	5
343	β-MOEA: A new multi-objective evolutionary algorithm based on the β indicator 2016 , Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. <i>Information Sciences</i> , 2016 , 339, 332-352 A Novel Diversity-Based Replacement Strategy for Evolutionary Algorithms. <i>IEEE Transactions on</i>		5 49

(2015-2016)

338	Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization. <i>Annals of Operations Research</i> , 2016 , 240, 217-250	3.2	43
337	Limiting the Velocity in the Particle Swarm Optimization Algorithm. <i>Computacion Y Sistemas</i> , 2016 , 20,	1.4	8
336	A Parallel Multi-objective Memetic Algorithm Based on the IGD+ Indicator. <i>Lecture Notes in Computer Science</i> , 2016 , 473-482	0.9	
335	2016,		11
334	IGD+-EMOA: A multi-objective evolutionary algorithm based on IGD+ 2016 ,		24
333	EMOPG+FS: Evolutionary multi-objective prototype generation and feature selection. <i>Intelligent Data Analysis</i> , 2016 , 20, S37-S51	1.1	3
332	Applying exponential weighting moving average control parameter adaptation technique with generalized differential evolution 2016 ,		4
331	Indicator-based cooperative coevolution for multi-objective optimization 2016,		11
330	Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance. <i>Lecture Notes in Computer Science</i> , 2016 , 121-137	0.9	4
329	Decomposition-Based Approach for Solving Large Scale Multi-objective Problems. <i>Lecture Notes in Computer Science</i> , 2016 , 525-534	0.9	6
328	A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2016 , 568-577	0.9	7
327	A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates 2016 ,		10
326	Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization 2015,		71
325	Constraint-Handling Techniques used with Evolutionary Algorithms 2015,		2
324	Improving the vector generation strategy of Differential Evolution for large-scale optimization. <i>Information Sciences</i> , 2015 , 323, 106-129	7.7	32
323	GD-MOEA: A New Multi-Objective Evolutionary Algorithm Based on the Generational Distance Indicator. <i>Lecture Notes in Computer Science</i> , 2015 , 156-170	0.9	14
322	Particle Swarm Optimization Based on Linear Assignment Problem Transformations 2015,		1
321	Algorithms and models for complex natural systems. <i>Natural Computing</i> , 2015 , 14, 339-340	1.3	

320	Surrogate-assisted multi-objective model selection for support vector machines. <i>Neurocomputing</i> , 2015 , 150, 163-172	5.4	20
319	On the adaptation of the mutation scale factor in differential evolution. <i>Optimization Letters</i> , 2015 , 9, 189-198	1.1	20
318	On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces 2015 ,		13
317	Evolutionary Many-Objective Optimization Based on Kuhn-Munkres[Algorithm. <i>Lecture Notes in Computer Science</i> , 2015 , 3-17	0.9	10
316	Many-Objective Problems: Challenges and Methods 2015 , 1033-1046		8
315	GDE-MOEA: A new MOEA based on the generational distance indicator and Edominance 2015,		5
314	. IEEE Transactions on Evolutionary Computation, 2015, 1-1	15.6	12
313	A non-cooperative game for faster convergence in cooperative coevolution for multi-objective optimization 2015 ,		6
312	Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges. <i>Computational Methods in Applied Sciences (Springer)</i> , 2015 , 3-18	0.4	19
311	A GPU-Based Algorithm for a Faster Hypervolume Contribution Computation. <i>Lecture Notes in Computer Science</i> , 2015 , 80-94	0.9	5
310	A survey of multi-objective metaheuristics applied to structural optimization. <i>Structural and Multidisciplinary Optimization</i> , 2014 , 49, 537-558	3.6	124
309	Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow A comparative study. <i>Engineering Applications of Artificial Intelligence</i> , 2014 , 32, 10-20	7.2	45
308	Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part II. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 20-35	15.6	138
307	Multi-objective model type selection. <i>Neurocomputing</i> , 2014 , 146, 83-94	5.4	17
306	. IEEE Transactions on Evolutionary Computation, 2014 , 18, 1-3	15.6	6
305	Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems. <i>Information Sciences</i> , 2014 , 277, 1-20	7.7	37
304	A comparative study of variation operators used for evolutionary multi-objective optimization. <i>Information Sciences</i> , 2014 , 273, 33-48	7.7	6
303	Objective space partitioning using conflict information for solving many-objective problems. <i>Information Sciences</i> , 2014 , 268, 305-327	7.7	17

(2013-2014)

302	Use of a multi-objective teaching-learning algorithm for reduction of power losses in a power test system. <i>DYNA (Colombia)</i> , 2014 , 81, 196	0.6	2
301	MOPSOhv: A new hypervolume-based multi-objective particle swarm optimizer 2014,		16
300	An evolutionary multi-objective approach for prototype generation 2014,		5
299	A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization 2014 ,		20
298	Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions 2014 ,		31
297	Multiobjective Optimization for Space Mission Design Problems 2014 , 1-46		
296	Constrained multi-objective aerodynamic shape optimization via swarm intelligence 2014,		4
295	Multi-objective compact differential evolution 2014,		2
294	Memetic Modified Artificial Bee Colony for constrained optimization 2014,		1
293	MD-MOEA: A new MOEA based on the maximin fitness function and Euclidean distances between solutions 2014 ,		3
292	An analysis of the automatic adaptation of the crossover rate in differential evolution 2014,		3
291	An empirical comparison of two crossover operators in real-coded genetic algorithms for constrained numerical optimization problems 2014 ,		2
290	A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 4-19	15.6	244
289	Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem. <i>Lecture Notes in Computer Science</i> , 2014 , 682-691	0.9	12
288	A More Efficient Selection Scheme in iSMS-EMOA. Lecture Notes in Computer Science, 2014, 371-380	0.9	2
287	A hybrid surrogate-based approach for evolutionary multi-objective optimization 2013,		16
286	Constraint-handling techniques used with evolutionary algorithms 2013,		1
285	Dynamic Constrained Optimization with offspring repair based Gravitational Search Algorithm 2013 ,		26

284	Reactive Power Handling by a Multi-Objective Teaching Learning Optimizer Based on Decomposition. <i>IEEE Transactions on Power Systems</i> , 2013 , 28, 3629-3637	7	22
283	Application of the non-outranked sorting genetic algorithm to public project portfolio selection. <i>Information Sciences</i> , 2013 , 228, 131-149	7.7	38
282	A ranking method based on the R2 indicator for many-objective optimization 2013,		25
281	Analysis of leader selection strategies in a multi-objective Particle Swarm Optimizer 2013,		18
2 80	A new selection mechanism based on hypervolume and its locality property 2013 ,		10
279	A novel multi-objective optimizer for handling reactive power 2013,		1
278	A hybrid Differential Evolution Tabu Search algorithm for the solution of Job-Shop Scheduling Problems. <i>Applied Soft Computing Journal</i> , 2013 , 13, 462-474	7·5	66
277	An evolutionary algorithm with a history mechanism for tuning a chess evaluation function. <i>Applied Soft Computing Journal</i> , 2013 , 13, 3234-3247	7.5	1
276	A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 321-344	15.6	181
275	Interactive Approaches Applied to Multiobjective Evolutionary Algorithms 2013 , 189-207		3
274	MOEA/D assisted by rbf networks for expensive multi-objective optimization problems 2013,		22
273	Improving the diversity preservation of multi-objective approaches used for single-objective optimization 2013 ,		14
272	Using multi-objective evolutionary algorithms for single-objective optimization. <i>4or</i> , 2013 , 11, 201-228	1.4	38
271	A Study of the Combination of Variation Operators in the NSGA-II Algorithm. <i>Lecture Notes in Computer Science</i> , 2013 , 269-278	0.9	7
270	MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator 2013,		61
269	A hybridization of MOEA/D with the nonlinear simplex search algorithm 2013 ,		5
268	Combining surrogate models and local search for dealing with expensive multi-objective optimization problems 2013 ,		14
267	Use of cooperative coevolution for solving large scale multiobjective optimization problems 2013,		89

266	Conference Report for 2013 IEEE Congress on Evolutionary Computation (IEEE CEC 2013) [Conference Reports]. <i>IEEE Computational Intelligence Magazine</i> , 2013 , 8, 8-9	5.6	
265	Artificial Immune System for Solving Dynamic Constrained Optimization Problems. <i>Studies in Computational Intelligence</i> , 2013 , 225-263	0.8	7
264	The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms. <i>Advances in Intelligent Systems and Computing</i> , 2013 , 153-168	0.4	10
263	On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms. <i>Studies in Computational Intelligence</i> , 2013 , 305-332	0.8	4
262	Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2013 , 215-229	0.9	6
261	An Alternative Preference Relation to Deal with Many-Objective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2013 , 291-306	0.9	12
260	Bias and Variance Multi-objective Optimization for Support Vector Machines Model Selection. <i>Lecture Notes in Computer Science</i> , 2013 , 108-116	0.9	4
259	Flame Classification through the Use of an Artificial Neural Network Trained with a Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2013 , 172-184	0.9	2
258	Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 504-522	15.6	360
257	A Multi-Objective Evolutionary approach for linear antenna array design and synthesis 2012,		4
²⁵⁷	A Multi-Objective Evolutionary approach for linear antenna array design and synthesis 2012, Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012,		12
256	Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012 ,	15.6	12
256 255	Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012, A new multi-objective evolutionary algorithm based on a performance assessment indicator 2012, Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering. <i>IEEE</i>	15.6	12
256 255 254	Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012, A new multi-objective evolutionary algorithm based on a performance assessment indicator 2012, Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering. <i>IEEE Transactions on Evolutionary Computation</i> , 2012, 16, 662-694 An Introduction to the Use of Evolutionary Computation Techniques for Dealing with ECG Signals	0.9	12
256 255 254 253	Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012, A new multi-objective evolutionary algorithm based on a performance assessment indicator 2012, Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering. IEEE Transactions on Evolutionary Computation, 2012, 16, 662-694 An Introduction to the Use of Evolutionary Computation Techniques for Dealing with ECG Signals 2012, 135-153 A Multi-Objective Artificial Immune System Based on Hypervolume. Lecture Notes in Computer		12 23 95
256255254253252	Multi-objective airfoil shape optimization using a multiple-surrogate approach 2012, A new multi-objective evolutionary algorithm based on a performance assessment indicator 2012, Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering. IEEE Transactions on Evolutionary Computation, 2012, 16, 662-694 An Introduction to the Use of Evolutionary Computation Techniques for Dealing with ECG Signals 2012, 135-153 A Multi-Objective Artificial Immune System Based on Hypervolume. Lecture Notes in Computer Science, 2012, 14-27 Solving multi-objective optimization problems using differential evolution and a maximin selection		12 23 95

248	An evolutionary algorithm coupled with the Hooke-Jeeves algorithm for tuning a chess evaluation function 2012 ,		2
247	A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms 2012 ,		17
246	A new mechanism to maintain diversity in multi-objective metaheuristics. <i>Optimization</i> , 2012 , 61, 823-8.	5 4 .2	4
245	A Fitness Granulation Approach for Large-Scale Structural Design Optimization 2012 , 245-280		6
244	Adaptive Control of the Number of Crossed Genes in Many-Objective Evolutionary Optimization. <i>Lecture Notes in Computer Science</i> , 2012 , 478-484	0.9	2
243	A Multi-objective Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme. <i>Lecture Notes in Computer Science</i> , 2012 , 169-180	0.9	3
242	Constraint-handling in nature-inspired numerical optimization: Past, present and future. <i>Swarm and Evolutionary Computation</i> , 2011 , 1, 173-194	9.8	637
241	Solving constrained optimization problems with a hybrid particle swarm optimization algorithm. <i>Engineering Optimization</i> , 2011 , 43, 843-866	2	44
240	A multi-objective particle swarm optimizer based on decomposition 2011,		50
239	Evolutionary Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization. <i>Studies in Computational Intelligence</i> , 2011 , 211-240	0.8	9
238	Multi-Objective Ant Colony Optimization: A Taxonomy and Review of Approaches. <i>Series in Machine Perception and Artificial Intelligence</i> , 2011 , 67-94	0.3	7
237	On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 444-455	15.6	141
236	Guest Editorial Special Issue on Differential Evolution. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 1-3	15.6	15
235	Smiling at evolution. Applied Soft Computing Journal, 2011, 11, 5724-5734	7.5	6
234	Evolutionary multiobjective optimization. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011 , 1, 444-447	6.9	11
233	Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method. <i>Information Sciences</i> , 2011 , 181, 44-56	7.7	51
232	A T-cell algorithm for solving dynamic optimization problems. <i>Information Sciences</i> , 2011 , 181, 3614-363	3 7 .7	15
231	Parametric reconfiguration improvement in non-iterative concurrent mechatronic design using an evolutionary-based approach. <i>Engineering Applications of Artificial Intelligence</i> , 2011 , 24, 757-771	7.2	18

230	Improving the efficiency of ?-dominance based grids. <i>Information Sciences</i> , 2011 , 181, 3101-3129	7.7	8
229	A nonlinear simplex search approach for multi-objective optimization 2011 ,		8
228	Differential Evolution performances for the solution of mixed-integer constrained process engineering problems. <i>Applied Soft Computing Journal</i> , 2011 , 11, 399-409	7.5	39
227	Solving timetabling problems using a cultural algorithm. <i>Applied Soft Computing Journal</i> , 2011 , 11, 337-	3 4.4	31
226	MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms. <i>Operations Research Letters</i> , 2011 , 39, 150-154	1	17
225	Effective ranking + speciation = Many-objective optimization 2011 ,		5
224	Preference incorporation to solve many-objective airfoil design problems 2011,		17
223	A fast particle swarm algorithm for solving smooth and non-smooth economic dispatch problems. <i>Engineering Optimization</i> , 2011 , 43, 485-505	2	12
222	Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. <i>Journal of Aerospace Computing, Information, and Communication</i> , 2011 , 8, 53-70		42
221	2011,		3
221	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165	0.9	10
	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization.	0.9	
220	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165 Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern		10
220	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165 Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition. Lecture Notes in Computer Science, 2011, 22-33 Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. Lecture Notes in	0.9	10
220 219 218	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165 Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition. Lecture Notes in Computer Science, 2011, 22-33 Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, 567-581 A multi-objective meta-model assisted memetic algorithm with non gradient-based local search	0.9	10 6 0
220 219 218 217	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165 Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition. Lecture Notes in Computer Science, 2011, 22-33 Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, 567-581 A multi-objective meta-model assisted memetic algorithm with non gradient-based local search 2010,	0.9	10 6 0
220 219 218 217 216	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, 151-165 Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition. Lecture Notes in Computer Science, 2011, 22-33 Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, 567-581 A multi-objective meta-model assisted memetic algorithm with non gradient-based local search 2010, Two novel approaches for many-objective optimization 2010, Highly reliable optimal solutions to multi-objective problems and their evolution by means of	0.9	10 6 o 3 15

212	Computing gap free Pareto front approximations with stochastic search algorithms. <i>Evolutionary Computation</i> , 2010 , 18, 65-96	4.3	54
211	Some comments on GD and IGD and relations to the Hausdorff distance 2010 ,		4
210	New challenges for memetic algorithms on continuous multi-objective problems 2010,		1
209	Constraint-handling techniques used with evolutionary algorithms 2010,		6
208	Using gradient information for multi-objective problems in the evolutionary context 2010,		3
207	A novel diversification strategy for multi-objective evolutionary algorithms 2010,		5
206	An Alternative ACO(_{Bbb{R}}) Algorithm for Continuous Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2010 , 48-59	0.9	10
205	A hybrid Memory-based ACO algorithm for the QAP 2010 ,		1
204	A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization. <i>Adaptation, Learning, and Optimization</i> , 2010 , 29-59	0.7	45
203	The Turing-850 Project: Developing a Personal Computer in the Early 1980s in Mexico. <i>IEEE Annals of the History of Computing</i> , 2010 , 32, 60-71	0.2	4
202	MODE-LD+SS: A novel Differential Evolution algorithm incorporating local dominance and scalar selection mechanisms for multi-objective optimization 2010 ,		9
201	HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 112-132	15.6	136
200	. IEEE Transactions on Evolutionary Computation, 2010 , 14, 618-635	15.6	83
199	A modified version of a T-Cell Algorithm for constrained optimization problems. <i>International Journal for Numerical Methods in Engineering</i> , 2010 , 84, n/a-n/a	2.4	11
198	Convergence speed in multi-objective metaheuristics: Efficiency criteria and empirical study. <i>International Journal for Numerical Methods in Engineering</i> , 2010 , 84, 1344-1375	2.4	24
197	Evolutionary hidden information detection by granulation-based fitness approximation. <i>Applied Soft Computing Journal</i> , 2010 , 10, 719-729	7.5	23
196	DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. <i>Computers and Operations Research</i> , 2010 , 37, 470-480	4.6	52
195	Evolutionary multiobjective optimization using an outranking-based dominance generalization. <i>Computers and Operations Research</i> , 2010 , 37, 390-395	4.6	48

(2009-2010)

194	Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size. <i>Studies in Computational Intelligence</i> , 2010 , 83-104	0.8	13
193	Multi-Objective Combinatorial Optimization: Problematic and Context. <i>Studies in Computational Intelligence</i> , 2010 , 1-21	0.8	29
192	Alternative Fitness Assignment Methods for Many-Objective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2010 , 146-157	0.9	11
191	A Memetic Algorithm with Non Gradient-Based Local Search Assisted by a Meta-model 2010 , 576-585		6
190	Objective Space Partitioning Using Conflict Information for Many-Objective Optimization 2010, 657-66	6	7
189	Using a Gradient Based Method to Seed an EMO Algorithm. <i>Lecture Notes in Economics and Mathematical Systems</i> , 2010 , 327-337	0.4	
188	Computing and Selecting Efficient Solutions of {0, 1}-Knapsack Problems. <i>Lecture Notes in Economics and Mathematical Systems</i> , 2010 , 379-389	0.4	3
187	pMODE-LD+SS: An Effective and Efficient Parallel Differential Evolution Algorithm for Multi-Objective Optimization 2010 , 21-30		
186	Testing the Permutation Space Based Geometric Differential Evolution on the Job-Shop Scheduling Problem 2010 , 250-259		
185	Using gradient-based information to deal with scalability in multi-objective evolutionary algorithms 2009 ,		5
184	Evolutionary continuation methods for optimization problems 2009,		5
183	A new proposal to hybridize the Nelder-Mead method to a differential evolution algorithm for constrained optimization 2009 ,		10
182	Ranking Methods for Many-Objective Optimization. Lecture Notes in Computer Science, 2009, 633-645	0.9	54
181	Study of preference relations in many-objective optimization 2009,		21
180	Boundary Search for Constrained Numerical Optimization Problems With an Algorithm Inspired by the Ant Colony Metaphor. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 350-368	15.6	30
179	g-dominance: Reference point based dominance for multiobjective metaheuristics. <i>European Journal of Operational Research</i> , 2009 , 197, 685-692	5.6	174
178	Design of a motorcycle frame using neuroacceleration strategies in MOEAs. <i>Journal of Heuristics</i> , 2009 , 15, 177-196	1.9	10
177	Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. <i>Frontiers of Computer Science</i> , 2009 , 3, 18-30		90

An optimal power flow plus transmission costs solution. *Electric Power Systems Research*, **2009**, 79, 1240-1246 9 176 Evolutionary Multiobjective Optimization in Materials Science and Engineering. Materials and 4.1 90 175 Manufacturing Processes, 2009, 24, 119-129 SMPSO: A new PSO-based metaheuristic for multi-objective optimization 2009, 276 174 Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. Lecture Notes in 0.9 173 73 Computer Science, 2009, 495-509 Solving Permutation Problems with Differential Evolution: An Application to the Jobshop 172 9 Scheduling Problem 2009. Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Generation, Transmission and Distribution, 171 2.5 84 2009, 3, 825-840 Multiobjective Optimization and Artificial Immune Systems 2009, 1-21 8 170 Ranking Methods in Many-Objective Evolutionary Algorithms. Studies in Computational Intelligence, 0.8 169 14 2009, 413-434 Online Objective Reduction to Deal with Many-Objective Problems. Lecture Notes in Computer 168 0.9 40 Science, 2009, 423-437 Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization. Studies 0.8 8 167 in Computational Intelligence, 2009, 23-49 An Introduction to Swarm Intelligence for Multi-objective Problems. Studies in Computational 166 0.8 4 *Intelligence*, **2009**, 1-17 A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks used for 0.8 165 Classification: A Data Mining Perspective. Studies in Computational Intelligence, 2009, 115-155 A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization. Studies in 164 0.8 26 Computational Intelligence, 2009, 9-37 A Particle Swarm Optimization Method for Multimodal Optimization Based on Electrostatic 163 0.9 10 Interaction. Lecture Notes in Computer Science, 2009, 622-632 Detecting Hidden Information from Watermarked Signal Using Granulation Based Fitness 162 \circ Approximation. Advances in Intelligent and Soft Computing, 2009, 463-472 Boundary Search for Constrained Numerical Optimization Problems. Studies in Computational 161 0.8 Intelligence, **2009**, 25-49 Optimal Power Flow Subject to Security Constraints Solved With a Particle Swarm Optimizer. IEEE 160 99 Transactions on Power Systems, 2008, 23, 33-40 An Artificial Immune System Heuristic for Generating Short Addition Chains. IEEE Transactions on 159 23 Evolutionary Computation, 2008, 12, 1-24

(2008-2008)

158	Seeding the initial population of a multi-objective evolutionary algorithm using gradient-based information 2008 ,		19
157	Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. <i>Engineering Optimization</i> , 2008 , 40, 383-402	2	35
156	An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. <i>International Journal of General Systems</i> , 2008 , 37, 443-473	2.1	284
155	Surrogate-based Multi-Objective Particle Swarm Optimization 2008,		3
154	Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. <i>Studies in Computational Intelligence</i> , 2008 , 173-196	0.8	81
153	On the Use of Projected Gradients for Constrained Multiobjective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2008 , 712-721	0.9	2
152	Constraint-handling techniques used with evolutionary algorithms 2008,		5
151	Solving constrained multi-objective problems by objective space analysis 2008,		2
150	Hybridizing surrogate techniques, rough sets and evolutionary algorithms to efficiently solve multi-objective optimization problems 2008 ,		4
149	A new memetic strategy for the numerical treatment of multi-objective optimization problems 2008 ,		14
148	Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms 2008 ,		9
147	Auto-tuning fuzzy granulation for evolutionary optimization 2008,		4
146	A comparative study of the effect of parameter scalability in multi-objective metaheuristics 2008,		15
145	Convergence of stochastic search algorithms to finite size pareto set approximations. <i>Journal of Global Optimization</i> , 2008 , 41, 559-577	1.5	43
144	Multi-Objective Evolutionary Algorithms: A Review of the State-of-the-Art and some of their Applications in Chemical Engineering. <i>Advances in Process Systems Engineering</i> , 2008 , 61-90		4
143	Constrained Optimization via Multiobjective Evolutionary Algorithms 2008, 53-75		41
142	Knowledge Incorporation in Multi-objective Evolutionary Algorithms. <i>Studies in Computational Intelligence</i> , 2008 , 23-46	0.8	12
141	Rough Sets Theory for Multi-Objective Optimization Problems. <i>Studies in Computational Intelligence</i> , 2008 , 81-98	0.8	3

140	An Introduction to Multi-Objective Evolutionary Algorithms and Some of Their Potential Uses in Biology. <i>Studies in Computational Intelligence</i> , 2008 , 79-102	0.8	3
139	A Preliminary Study of Fitness Inheritance in Evolutionary Constrained Optimization. <i>Studies in Computational Intelligence</i> , 2008 , 1-14	0.8	5
138	A Study of Convergence Speed in Multi-objective Metaheuristics. <i>Lecture Notes in Computer Science</i> , 2008 , 763-772	0.9	18
137	Approximating the Knee of an MOP with Stochastic Search Algorithms. <i>Lecture Notes in Computer Science</i> , 2008 , 795-804	0.9	20
136	Approximate Solutions in Space Mission Design. Lecture Notes in Computer Science, 2008, 805-814	0.9	7
135	A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques. <i>Lecture Notes in Computer Science</i> , 2008 , 837-846	0.9	16
134	Parallel Approaches for Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2008 , 349-372	0.9	43
133	Use of Radial Basis Functions and Rough Sets for Evolutionary Multi-Objective Optimization 2007,		4
132	An ant system with steps counter for the job shop scheduling problem 2007,		1
131	Multiobjective Location of Automatic Voltage Regulators in a Radial Distribution Network Using a Micro Genetic Algorithm. <i>IEEE Transactions on Power Systems</i> , 2007 , 22, 404-412	7	54
130	Integration of structure and control using an evolutionary approach: an application to the optimal concurrent design of a CVT. <i>International Journal for Numerical Methods in Engineering</i> , 2007 , 71, 883-90	1 ⁻⁴	15
129	MRMOGA: a new parallel multi-objective evolutionary algorithm based on the use of multiple resolutions. <i>Concurrency Computation Practice and Experience</i> , 2007 , 19, 397-441	1.4	26
128	Multiple trial vectors in differential evolution for engineering design. <i>Engineering Optimization</i> , 2007 , 39, 567-589	2	84
127	Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem. <i>Engineering Optimization</i> , 2007 , 39, 69-85	2	13
126	Constraint-handling techniques used with evolutionary algorithms 2007,		4
125	Convergence of stochastic search algorithms to gap-free pareto front approximations 2007,		14
124	Epsilon-constraint with an efficient cultured differential evolution 2007,		1
123	Alternative techniques to solve hard multi-objective optimization problems 2007,		7

122	A bi-population PSO with a shake-mechanism for solving constrained numerical optimization 2007,		10
121	Comparative study of serial and parallel heuristics used to design combinational logic circuits. <i>Optimization Methods and Software</i> , 2007 , 22, 485-509	1.3	5
120	Pareto-adaptive epsilon-dominance. Evolutionary Computation, 2007, 15, 493-517	4.3	134
119	A Memetic PSO Algorithm for Scalar Optimization Problems 2007,		10
118	Handling Constraints in Particle Swarm Optimization Using a Small Population Size 2007, 41-51		13
117	Applications of multi-objective evolutionary algorithms in economics and finance: A survey 2007,		22
116	A boundary search based ACO algorithm coupled with stochastic ranking 2007,		7
115	A Genetic Representation for Dynamic System Qualitative Models on Genetic Programming: A Gene Expression Programming Approach. <i>Lecture Notes in Computer Science</i> , 2007 , 30-40	0.9	
114	Hybrid Particle Swarm Optimizers in the Single Machine Scheduling Problem: An Experimental Study. <i>Studies in Computational Intelligence</i> , 2007 , 143-164	0.8	2
113	A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer. <i>Studies in Computational Intelligence</i> , 2007 , 269-296	0.8	6
112	EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency 2007 , 272-285		16
111	Optimization to Manage Supply Chain Disruptions Using the NSGA-II 2007 , 476-485		11
110	Approximating the Efficient Set of an MOP with Stochastic Search Algorithms. <i>Lecture Notes in Computer Science</i> , 2007 , 128-138	0.9	9
109	A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor 2007 , 19-29		4
108	Evolutionary multi-objective optimization: a historical view of the field. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 28-36	5.6	672
107	The EMOO repository: a resource for doing research in evolutionary multiobjective optimization. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 37-45	5.6	8
106	Hybrid particle swarm optimizer for a class of dynamic fitness landscape. <i>Engineering Optimization</i> , 2006 , 38, 873-888	2	9
105	Solving Hard Multiobjective Optimization Problems Using EConstraint with Cultured Differential Evolution. <i>Lecture Notes in Computer Science</i> , 2006 , 543-552	0.9	20

104	A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory. <i>Lecture Notes in Computer Science</i> , 2006 , 483-492	0.9	11
103	A comparative study of differential evolution variants for global optimization 2006,		307
102	A new proposal for multi-objective optimization using differential evolution and rough sets theory 2006 ,		24
101	Cultured differential evolution for constrained optimization. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 4303-4322	5.7	189
100	Asymptotic convergence of metaheuristics for multiobjective optimization problems. <i>Soft Computing</i> , 2006 , 10, 1001-1005	3.5	24
99	Asymptotic convergence of a simulated annealing algorithm for multiobjective optimization problems. <i>Mathematical Methods of Operations Research</i> , 2006 , 64, 353-362	1	13
98	Boundary Search for Constrained Numerical Optimization Problems in ACO Algorithms. <i>Lecture Notes in Computer Science</i> , 2006 , 108-119	0.9	6
97	A Particle Swarm Optimizer for Constrained Numerical Optimization. <i>Lecture Notes in Computer Science</i> , 2006 , 910-919	0.9	13
96	A Multi-objective Particle Swarm Optimizer Hybridized with Scatter Search. <i>Lecture Notes in Computer Science</i> , 2006 , 294-304	0.9	7
95	A simple multimembered evolution strategy to solve constrained optimization problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2005 , 9, 1-17	15.6	406
94	A new multi-objective evolutionary algorithm: neighbourhood exploring evolution strategy. <i>Engineering Optimization</i> , 2005 , 37, 351-379	2	15
93	Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ?-Dominance. <i>Lecture Notes in Computer Science</i> , 2005 , 505-519	0.9	355
92	Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2005 , 652-662	0.9	61
91	Recent Trends in Evolutionary Multiobjective Optimization 2005 , 7-32		62
90	Asymptotic Convergence of Some Metaheuristics Used for Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2005 , 95-111	0.9	4
89	Multiobjective structural optimization using a microgenetic algorithm. <i>Structural and Multidisciplinary Optimization</i> , 2005 , 30, 388-403	3.6	91
88	Extraction and reuse of design patterns from genetic algorithms using case-based reasoning. <i>Soft Computing</i> , 2005 , 9, 44-53	3.5	5
87	Solving Multiobjective Optimization Problems Using an Artificial Immune System. <i>Genetic Programming and Evolvable Machines</i> , 2005 , 6, 163-190	2	487

86	Optimization with constraints using a cultured differential evolution approach 2005,		22
85	Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization 2005 ,		38
84	An Algorithm Based on Differential Evolution for Multi-Objective Problems. <i>International Journal of Computational Intelligence Research</i> , 2005 , 1,	O	44
83	Coevolutionary Multi-objective Optimization Using Clustering Techniques. <i>Lecture Notes in Computer Science</i> , 2005 , 603-612	0.9	
82	Human Preferences and their Applications in Evolutionary MultiDbjective Optimization. <i>Studies in Fuzziness and Soft Computing</i> , 2005 , 479-502	0.7	6
81	A Cultural Algorithm for Solving the Job Shop Scheduling Problem. <i>Studies in Fuzziness and Soft Computing</i> , 2005 , 37-55	0.7	13
80	Use of Multiobjective Optimization Concepts to Handle Constraints in Genetic Algorithms 2005 , 229-2	54	3
79	An Introduction to Evolutionary Algorithms and Their Applications. <i>Lecture Notes in Computer Science</i> , 2005 , 425-442	0.9	10
78	Handling Constraints in Global Optimization Using an Artificial Immune System. <i>Lecture Notes in Computer Science</i> , 2005 , 234-247	0.9	24
77	Finding Optimal Addition Chains Using a Genetic Algorithm Approach. <i>Lecture Notes in Computer Science</i> , 2005 , 208-215	0.9	14
76	A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm. <i>Lecture Notes in Computer Science</i> , 2004 , 688-697	0.9	98
75	Convergence Analysis of a Multiobjective Artificial Immune System Algorithm. <i>Lecture Notes in Computer Science</i> , 2004 , 226-235	0.9	21
74	Using genetic programing and multiplexers for the synthesis of logic circuits. <i>Engineering Optimization</i> , 2004 , 36, 491-511	2	6
73	Hybridizing a genetic algorithm with an artificial immune system for global optimization. <i>Engineering Optimization</i> , 2004 , 36, 607-634	2	93
72	Simple Feasibility Rules and Differential Evolution for Constrained Optimization. <i>Lecture Notes in Computer Science</i> , 2004 , 707-716	0.9	34
71	Handling constraints using multiobjective optimization concepts. <i>International Journal for Numerical Methods in Engineering</i> , 2004 , 59, 1989-2017	2.4	121
70	Particle Swarm Optimization in Non-stationary Environments. <i>Lecture Notes in Computer Science</i> , 2004 , 757-766	0.9	9
69	Efficient evolutionary optimization through the use of a cultural algorithm. <i>Engineering Optimization</i> , 2004 , 36, 219-236	2	157

68	Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer. <i>Lecture Notes in Computer Science</i> , 2004 , 225-237	0.9	66
67	A Cultural Algorithm with Differential Evolution to Solve Constrained Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2004 , 881-890	0.9	15
66	Handling multiple objectives with particle swarm optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2004 , 8, 256-279	15.6	2572
65	Applications of Multi-Objective Evolutionary Algorithms. Advances in Natural Computation, 2004,		230
64	Evolutionary Synthesis of Logic Circuits Using Information Theory 2004 , 285-311		О
63	On the Optimal Computation of Finite Field Exponentiation. <i>Lecture Notes in Computer Science</i> , 2004 , 747-756	0.9	4
62	Reusing Code in Genetic Programming. Lecture Notes in Computer Science, 2004, 359-368	0.9	10
61	An Improved Diversity Mechanism for Solving Constrained Optimization Problems Using a Multimembered Evolution Strategy. <i>Lecture Notes in Computer Science</i> , 2004 , 700-712	0.9	10
60	IS-PAES: Multiobjective Optimization with Efficient Constraint Handling 2004, 111-120		5
59	Job Shop Scheduling using the Clonal Selection Principle 2004 , 113-124		8
58	Extracting and re-using design patterns from genetic algorithms using case-based reasoning. <i>Engineering Optimization</i> , 2003 , 35, 121-141	2	4
57	Assessment Methodologies for Multiobjective Evolutionary Algorithms 2003 , 177-195		11
56	Use of an Artificial Immune System for Job Shop Scheduling. <i>Lecture Notes in Computer Science</i> , 2003 , 1-10	0.9	43
55	Evolutionary Algorithms and Multiple Objective Optimization. <i>Profiles in Operations Research</i> , 2003 , 277	7- <u>3</u> 31	5
54	Evolutionary Synthesis of Logic Circuits Using Information Theory. <i>Artificial Intelligence Review</i> , 2003 , 20, 445-471	9.7	1
53	Use of Particle Swarm Optimization to Design Combinational Logic Circuits. <i>Lecture Notes in Computer Science</i> , 2003 , 398-409	0.9	32
52	Evolutionary Multi-Objective Optimization: A Critical Review 2003 , 117-146		5
51	Multiobjective Optimization Using Ideas from the Clonal Selection Principle. <i>Lecture Notes in Computer Science</i> , 2003 , 158-170	0.9	19

50	Synthesis of Boolean Functions Using Information Theory. Lecture Notes in Computer Science, 2003, 218	-227	2
49	IS-PAES: A Constraint-Handling Technique Based on Multiobjective Optimization Concepts. <i>Lecture Notes in Computer Science</i> , 2003 , 73-87	0.9	2
48	Use of Multiobjective Optimization Concepts to Handle Constraints in Single-Objective Optimization. <i>Lecture Notes in Computer Science</i> , 2003 , 573-584	0.9	1
47	The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2003 , 252-266	0.9	31
46	A Simple Evolution Strategy to Solve Constrained Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2003 , 640-641	0.9	9
45	Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. <i>Advanced Engineering Informatics</i> , 2002 , 16, 193-203	7.4	570
44	Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2002 , 191, 1245-	1287	1493
43	Design of combinational logic circuits through an evolutionary multiobjective optimization approach. <i>Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM</i> , 2002 , 16, 39-53	1.3	50
42	Automated Design of Combinational Logic Circuits Using the Ant System. <i>Engineering Optimization</i> , 2002 , 34, 109-127	2	11
41	A Cultural Algorithm for Constrained Optimization. Lecture Notes in Computer Science, 2002, 98-107	0.9	3
40	Genetic Algorithms and Case-Based Reasoning as a Discovery and Learning Machine in the Optimization of Combinational Logic Circuits. <i>Lecture Notes in Computer Science</i> , 2002 , 128-137	0.9	1
39	Handling Constraints in Genetic Algorithms Using Dominance-based Tournaments 2002 , 273-284		29
38	Evolutionary Algorithms for Solving Multi-Objective Problems. <i>Genetic Algorithms and Evolutionary Computation</i> , 2002 ,		1308
37	Towards automated evolutionary design of combinational circuits. <i>Computers and Electrical Engineering</i> , 2000 , 27, 1-28	4.3	30
36	Use of a self-adaptive penalty approach for engineering optimization problems. <i>Computers in Industry</i> , 2000 , 41, 113-127	11.6	778
35	Multiobjective optimization of trusses using genetic algorithms. <i>Computers and Structures</i> , 2000 , 75, 647-660	4.5	157
34	An updated survey of GA-based multiobjective optimization techniques. <i>ACM Computing Surveys</i> , 2000 , 32, 109-143	13.4	447
33	TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION. <i>Engineering Optimization</i> , 2000 , 32, 275-308	2	182

32	CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE. <i>Civil Engineering and Environmental Systems</i> , 2000 , 17, 319-346	2.1	259
31	Ant Colony System for the Design of Combinational Logic Circuits. <i>Lecture Notes in Computer Science</i> , 2000 , 21-30	0.9	14
30	A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. <i>Knowledge and Information Systems</i> , 1999 , 1, 269-308	2.4	780
29	MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN. <i>Engineering Optimization</i> , 1999 , 31, 337-368	2	91
28	Using the Min-Max Method to Solve Multiobjective Optimization Problems with Genetic Algorithms. <i>Lecture Notes in Computer Science</i> , 1998 , 303-313	0.9	4
27	TWO NEW GA-BASED METHODS FOR MULTIOBJECTIVE OPTIMIZATION. <i>Civil Engineering and Environmental Systems</i> , 1998 , 15, 207-243	2.1	26
26	Using a new GA-based multiobjective optimization technique for the design of robot arms. <i>Robotica</i> , 1998 , 16, 401-414	2.1	34
25	Optimal design of reinforced concrete beams using genetic algorithms. <i>Expert Systems With Applications</i> , 1997 , 12, 101-108	7.8	48
24	A simple genetic algorithm for the design of reinforced concrete beams. <i>Engineering With Computers</i> , 1997 , 13, 185-196	4.5	64
23	A GENETIC ALGORITHM FOR THE OPTIMAL DESIGN OF AXIALLY LOADED NON-PRISMATIC COLUMNS. <i>Civil Engineering and Environmental Systems</i> , 1996 , 14, 111-146		3
22	Using Genetic Algorithms for Optimal Design of Axially Loaded Non-Prismatic Columns 1995 , 460-463		1
21	Saving evaluations in differential evolution for constrained optimization		2
20	A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer		21
19	Fitness inheritance in multi-objective particle swarm optimization		12
18	Evolutionary multiobjective design targeting a Field Programmable Transistor Array		2
17	A coevolutionary multi-objective evolutionary algorithm		25
16	Comparing different serial and parallel heuristics to design combinational logic circuits		7
15	Evolutionary multiobjective optimization using a cultural algorithm		25

LIST OF PUBLICATIONS

14	Multiobjective-based concepts to handle constraints in evolutionary algorithms	7
13	Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems	18
12	On the use of particle swarm optimization with multimodal functions	45
11	MOPSO: a proposal for multiple objective particle swarm optimization	514
10	A parallel implementation of an artificial immune system to handle constraints in genetic algorithms: preliminary results	11
9	Gate-level synthesis of Boolean functions using binary multiplexers and genetic programming	1
8	Handling preferences in evolutionary multiobjective optimization: a survey	98
7	Evolutionary multiobjective design of combinational logic circuits	21
6	On learning kDNF/sub n//sup s/ Boolean formulas	2
5	Self-adaptive penalties for GA-based optimization	22
4	An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends	71
3	A genetic programming approach to logic function synthesis by means of multiplexers	12
2	Smiling at Evolution. SSRN Electronic Journal,	2
1	Towards a More Efficient Multi-Objective Particle Swarm Optimizer76-105	7