
Ik-Soo Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/643190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multielectrode Spectroscopy Enables Rapid and Sensitive Molecular Profiling of Extracellular Vesicles. ACS Central Science, 2022, 8, 110-117.	11.3	12
2	Electrochemiluminescent "turn-on―chemosensor based on the selective recognition binding kinetics with glutathione. Sensors and Actuators B: Chemical, 2022, 357, 131408.	7.8	10
3	New Highly Stable Ionic Compounds Composed of Multivalent Graphene Quantum Dot Anions and Alkali Metal Cations. Batteries and Supercaps, 2022, 5, .	4.7	2
4	Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors. ACS Omega, 2022, 7, 17723-17731.	3.5	8
5	Kaleidoscopic fluorescent arrays for machine-learning-based point-of-care chemical sensing. Sensors and Actuators B: Chemical, 2021, 329, 129248.	7.8	11
6	Stainless steel 304 needle electrode for precise glucose biosensor with high signal-to-noise ratio. Sensors and Actuators B: Chemical, 2021, 346, 130552.	7.8	12
7	A Guide for Realizing Efficient Polymer Lightâ€Emitting Electrochemical Cells in a Single Active Layer Device Structure. ChemElectroChem, 2020, 7, 260-265.	3.4	4
8	Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode. Biochip Journal, 2020, 14, 308-316.	4.9	14
9	Tunable Electrochemical Grafting of Diazonium for Highly Sensitive Impedimetric DNA Sensor. Journal of the Electrochemical Society, 2020, 167, 087504.	2.9	7
10	Data on characterization and electrochemical analysis of zinc oxide and tungsten trioxide as counter electrodes for electrochromic devices. Data in Brief, 2020, 31, 105891.	1.0	7
11	Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	17
12	Diffusion and Kinetic ontrolled Electrochemical Reactions for Improving the Performance of Solutionâ€based Electrochemiluminescence Devices. Bulletin of the Korean Chemical Society, 2020, 41, 362-365.	1.9	2
13	Electrodeposition of Zinc Oxide Nanowires as a Counter Electrode in Electrochromic Devices. Bulletin of the Korean Chemical Society, 2020, 41, 358-361.	1.9	8
14	Potential-Dependent Electrochemiluminescence for Selective Molecular Sensing of Cyanide. Analytical Chemistry, 2020, 92, 6019-6025.	6.5	32
15	Implementation of high-performance electrochromic device based on all-solution-fabricated Prussian blue and tungsten trioxide thin film. Electrochimica Acta, 2020, 353, 136446.	5.2	23
16	Highly efficient low-oxidation-potential electrochemiluminescence of ruthenium(II) complex containing selone moiety. Inorganic Chemistry Communication, 2019, 106, 86-90.	3.9	5
17	Advanced method for fabrication of molecularly imprinted mesoporous organosilica with highly sensitive and selective recognition of glyphosate. Scientific Reports, 2019, 9, 10293.	3.3	10
18	Electrochemiluminescent Chemosensors for Clinical Applications: A Review. Biochip Journal, 2019, 13, 203-216.	4.9	26

#	Article	IF	CITATIONS
19	Electrochemical Immunoassay Based on Indium Tin Oxide Activity Toward a Alkaline Phosphatase. Biochip Journal, 2019, 13, 387-393.	4.9	18
20	Dynamic Interplay between Transport and Reaction Kinetics of Luminophores on the Operation of AC-Driven Electrochemiluminescence Devices. ACS Applied Materials & Interfaces, 2018, 10, 41562-41569.	8.0	18
21	Pulsed Driving Methods for Enhancing the Stability of Electrochemiluminescence Devices. ACS Photonics, 2018, 5, 3723-3730.	6.6	13
22	Diffusion controlled multilayer electrocatalysts <i>via</i> graphene oxide nanosheets of varying sizes. Nanoscale, 2018, 10, 16159-16168.	5.6	22
23	Electrochemiluminescent chemodosimeter based on iridium(III) complex for point-of-care detection of homocysteine levels. Biosensors and Bioelectronics, 2017, 91, 497-503.	10.1	33
24	Homogeneous Electrochemical Assay for Realâ€time Monitoring of Exonuclease III Activity Based on a Graphene Monolayer. Electroanalysis, 2017, 29, 1749-1754.	2.9	7
25	Postâ€Synthetic Modification of Mesoporous Zincâ€Adeninate Framework with Tris(2,2′â€bipyridine) Ruthenium(II) Complex and its Electrochemiluminescence. Bulletin of the Korean Chemical Society, 2017, 38, 471-476.	1.9	3
26	Electrostatic Modification for Promotion of Flavinâ€Mediated Oxidation of a Probe for Flavin Detection. Chemistry - A European Journal, 2017, 23, 16078-16084.	3.3	5
27	Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato- <italic>N,C</italic> 2')acetylacetonate by Electrochemical Methods. Journal of Electrochemical Science and Technology, 2017, 8, 96-100.	2.2	0
28	Electroanalytical Investigation of 2,2′,7,7′â€Tetrakis(diphenylamino)â€9,9′â€spirobifluorene. Bulletin of Korean Chemical Society, 2016, 37, 685-688.	the 1.9	0
29	Paper Stripâ€based Fluorometric Determination of Cyanide with an Internal Reference. Bulletin of the Korean Chemical Society, 2016, 37, 1320-1325.	1.9	8
30	Low Mass lons in Laser Desorption/Ionization Mass Spectrometry of 1â€Methoxyâ€5â€aminotetrazole. Bulletin of the Korean Chemical Society, 2016, 37, 99-102.	1.9	0
31	Regenerative fluorescence "turn-on―probe for biothiols through Cu(II)/Cu(I) redox conversion. Sensors and Actuators B: Chemical, 2016, 237, 256-261.	7.8	19
32	Single Electron Transfer-Promoted Photochemical Reactions of Secondary <i>N</i> -Trimethylsilylmethyl- <i>N</i> -benzylamines Leading to Aminomethylation of Fullerene C ₆₀ . Journal of Organic Chemistry, 2016, 81, 2460-2473.	3.2	25
33	Electrocatalytic Determination of Ascorbic Acid Using Zincâ€Adeninate Metal–Organic Framework. Bulletin of the Korean Chemical Society, 2015, 36, 2363-2366.	1.9	1
34	Gold Nanoparticle Enhanced Electrochemical Assay for Protein Kinase Activity Using a Synthetic Chemosensor on a Microchip. Journal of the Electrochemical Society, 2015, 162, B89-B93.	2.9	9
35	Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale, 2015, 7, 7540-7544.	5.6	41
36	Rhodium Complex and Enzyme Couple Mediated Electrochemical Detection of Adenosine. Applied Biochemistry and Biotechnology, 2015, 177, 812-820.	2.9	6

#	Article	IF	CITATIONS
37	Electroimmobilization of DNA for ultrafast detection on a microchannel integrated pentacene TFT. Journal of Industrial and Engineering Chemistry, 2015, 21, 126-128.	5.8	6
38	An Electrochemical Assay for Restriction Endonuclease Activity Using Graphene Monolayer. Journal of the Electrochemical Society, 2014, 161, B261-B264.	2.9	8
39	Homogeneous Electrochemical Assay for Protein Kinase Activity. Analytical Chemistry, 2014, 86, 10992-10995.	6.5	30
40	Microfluidic bead-based sensing platform for monitoring kinase activity. Biosensors and Bioelectronics, 2014, 57, 1-9.	10.1	18
41	Colorâ€Tunable Electrogenerated Chemiluminescence of Ruthenium <i>N</i> â€Heterocyclic Carbene Complexes. Electroanalysis, 2013, 25, 1111-1115.	2.9	8
42	Real-time monitoring of S-adenosyl-l-homocysteine hydrolase using a chemodosimetric fluorescence "turn-on―sensor. Sensors and Actuators B: Chemical, 2013, 185, 663-668.	7.8	4
43	Fluorescent chemosensor for biological zinc ions. Supramolecular Chemistry, 2013, 25, 2-6.	1.2	9
44	Analytical detection of biological thiols in a microchip capillary channel. Biosensors and Bioelectronics, 2013, 40, 362-367.	10.1	33
45	Screening and electrochemical detection of an antibiotic producing gene in bacteria on an integrated microchip. Analytical Methods, 2013, 5, 6814.	2.7	4
46	Fabrication and Characterization Nano Porous Anodic ZrO2Membranes by Two-Step Anodizing. Journal of the Korean Chemical Society, 2013, 57, 547-553.	0.2	2
47	Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction. Applied Physics Letters, 2012, 100, .	3.3	19
48	Effect of CdSe nanoparticles in polymethylmethacrylate tunneling layer on the performance of nonvolatile organic memory device. Microelectronic Engineering, 2012, 98, 305-308.	2.4	15
49	Efficient Fluorescence "Turn-On―Sensing of Dissolved Oxygen by Electrochemical Switching. Analytical Chemistry, 2012, 84, 9163-9168.	6.5	35
50	Evaluation of electrogenerated chemiluminescence from a neutral Ir(iii) complex for quantitative analysis in flowing streams. Analyst, The, 2011, 136, 2151.	3.5	22
51	Fast-response light-emitting electrochemical cells based on neutral iridium(III) complex. Electrochemistry Communications, 2011, 13, 64-67.	4.7	17
52	Efficient green-colored electrochemiluminescence from cyclometalated iridium(III) complex. Electrochimica Acta, 2011, 56, 6219-6223.	5.2	24
53	Detection of Kinase Activity Using Versatile Fluorescence Quencher Probes. Angewandte Chemie - International Edition, 2010, 49, 4919-4923.	13.8	53
54	Fluorescence Turn-On Sensor for Cyanide Based on a Cobalt(II)â^'Coumarinylsalen Complex. Organic Letters, 2010, 12, 764-767.	4.6	225

#	Article	IF	CITATIONS
55	Electrogenerated Chemiluminescent Anion Sensing: Selective Recognition and Sensing of Pyrophosphate. Analytical Chemistry, 2010, 82, 8259-8265.	6.5	75
56	Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)32+-doped silica nanoparticles. Analyst, The, 2010, 135, 603.	3.5	25
57	New Approach Toward Fast Response Lightâ€Emitting Electrochemical Cells Based on Neutral Iridium Complexes via Cation Transport. Advanced Functional Materials, 2009, 19, 711-717.	14.9	63
58	Efficient blue phosphorescent host through nonbonded conformational locking interactions. New Journal of Chemistry, 2008, 32, 1368.	2.8	9
59	Efficient Electrogenerated Chemiluminescence from Bis-Cyclometalated Iridium(III) Complexes with Substituted 2-Phenylquinoline Ligands. Journal of Physical Chemistry C, 2007, 111, 2280-2286.	3.1	84
60	Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations. Organometallics, 2005, 24, 1578-1585.	2.3	138
61	Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes. Journal of the American Chemical Society, 2005, 127, 1614-1615.	13.7	310