## Bernard Le Bonniec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430669/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach. European<br>Journal of Pharmacology, 2020, 866, 172798.                                                                                                        | 3.5 | 10        |
| 2  | The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines, 2019, 7, 148.                                                                                                  | 4.4 | 16        |
| 3  | Modified ROTEM for the detection of rivaroxaban and apixaban anticoagulant activity in whole blood.<br>European Journal of Anaesthesiology, 2019, 36, 449-456.                                                                                          | 1.7 | 22        |
| 4  | Strategies of neutralization of the direct oral anticoagulants effect: review of the literature.<br>Hematologie, 2019, 25, 233-247.                                                                                                                     | 0.0 | 0         |
| 5  | Strategies of neutralization of the direct oral anticoagulants effect: review of the literature.<br>Annales De Biologie Clinique, 2019, 77, 67-78.                                                                                                      | 0.1 | 1         |
| 6  | Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatric Pulmonology, 2019, 54, 66-72.                                                                        | 2.0 | 13        |
| 7  | FXa-α2-Macroglobulin Complex Neutralizes Direct Oral Anticoagulants Targeting FXa In Vitro and In<br>Vivo. Thrombosis and Haemostasis, 2018, 118, 1535-1544.                                                                                            | 3.4 | 7         |
| 8  | Thrombin generation test: A reliable tool to evaluate the pharmacodynamics of vitamin K antagonist rodenticides in rats. Pesticide Biochemistry and Physiology, 2018, 146, 19-24.                                                                       | 3.6 | 3         |
| 9  | Ticagrelor reversal:in vitroassessment of four haemostatic agents. Journal of Clinical Pathology, 2017, 70, 733-739.                                                                                                                                    | 2.0 | 14        |
| 10 | Pulsed cavitational therapy using high-frequency ultrasound for the treatment of deep vein<br>thrombosis in an <i>in vitro</i> model of human blood clot. Physics in Medicine and Biology, 2017, 62,<br>9282-9294.                                      | 3.0 | 5         |
| 11 | Gestational age-related patterns of AMOT methylation are revealed in preterm infant endothelial progenitors. PLoS ONE, 2017, 12, e0186321.                                                                                                              | 2.5 | 12        |
| 12 | Notice of Removal: Evaluation of a new non-invasive ultrasonic device for venous recanalization:<br>Assessment of feasibility and safety of thrombotripsy at 2.25 MHz in an in vitro model of recent<br>venous thrombosis. , 2017, , .                  |     | 0         |
| 13 | Association rate constants rationalise the pharmacodynamics of apixaban and rivaroxaban.<br>Thrombosis and Haemostasis, 2015, 114, 78-86.                                                                                                               | 3.4 | 34        |
| 14 | Multimodal assessment of nonâ€specific hemostatic agents for apixaban reversal. Journal of<br>Thrombosis and Haemostasis, 2015, 13, 426-436.                                                                                                            | 3.8 | 43        |
| 15 | Thrombin. , 2013, , 2915-2932.                                                                                                                                                                                                                          |     | 5         |
| 16 | Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. International Journal of Cardiology, 2013, 168, 4228-4233.                | 1.7 | 96        |
| 17 | Reversal of anticoagulant effects of apixaban with non-specific prohaemostatic agents: an in vitro<br>study. European Heart Journal, 2013, 34, P4854-P4854.                                                                                             | 2.2 | 0         |
| 18 | Large-Scale Chromatin Immunoprecipitation with Promoter Sequence Microarray Analysis of the<br>Interaction of the NSs Protein of Rift Valley Fever Virus with Regulatory DNA Regions of the Host<br>Genome. Journal of Virology, 2012, 86, 11333-11344. | 3.4 | 26        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recombinant activated factor VII and prothrombin complex concentrates have different effects on bleeding and arterial thrombosis in the haemodiluted rabbit. British Journal of Anaesthesia, 2012, 108, 586-593.                       | 3.4 | 5         |
| 20 | A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells. Biochemical Pharmacology, 2012, 84, 1014-1023.                                                     | 4.4 | 17        |
| 21 | Evaluation of Prothrombin Complex Concentrate and Recombinant Activated Factor VII to Reverse<br>Rivaroxaban in a Rabbit Model. Anesthesiology, 2012, 116, 94-102.                                                                     | 2.5 | 250       |
| 22 | Recombinant activated factor VII does not reduce bleeding in rabbits treated with aspirin and clopidogrel. Thrombosis and Haemostasis, 2010, 104, 823-830.                                                                             | 3.4 | 11        |
| 23 | Plasminogen Activators from Snake Venoms. , 2010, , 371-392.                                                                                                                                                                           |     | 2         |
| 24 | Characterization of a homozygous Gly11Val mutation in the Gla domain of coagulation factor X.<br>Thrombosis Research, 2009, 124, 144-148.                                                                                              | 1.7 | 4         |
| 25 | Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2008, 12, 975-986.                                                          | 3.6 | 47        |
| 26 | Platelet Factor 4 (CXCL4) Seals Blood Clots by Altering the Structure of Fibrin. Journal of Biological Chemistry, 2007, 282, 710-720.                                                                                                  | 3.4 | 54        |
| 27 | STRUCTURE–FUNCTION RELATIONSHIP IN THE PLASMINOGEN ACTIVATOR ISOLATED FROM THE VENOM OFTRIMERESURUS STEJNEGERI. Toxin Reviews, 2007, 26, 1-24.                                                                                         | 3.4 | 1         |
| 28 | The γ-carboxyglutamic acid domain of anticoagulant protein S is involved in activated protein C cofactor activity, independently of phospholipid binding. Blood, 2005, 105, 122-130.                                                   | 1.4 | 33        |
| 29 | Control of the coagulation system by serpins. FEBS Journal, 2005, 272, 4842-4851.                                                                                                                                                      | 4.7 | 117       |
| 30 | Purification and initial characterization of a novel protein with factor Xa activity from <i>Lonomia obliqua</i> caterpillar spicules. Journal of Mass Spectrometry, 2005, 40, 405-412.                                                | 1.6 | 16        |
| 31 | Thrombin-activable Factor X Re-establishes an Intrinsic Amplification in Tenase-deficient Plasmas.<br>Journal of Biological Chemistry, 2005, 280, 41352-41359.                                                                         | 3.4 | 21        |
| 32 | Inherited factor VII deficiency: identification of two novel mutations (A191V and T239P) in the catalytic domain. Thrombosis Research, 2005, 116, 115-120.                                                                             | 1.7 | 6         |
| 33 | The Elusive Role of the Potential Factor X Cation-binding Exosite-1 in Substrate and Inhibitor<br>Interactions. Journal of Biological Chemistry, 2004, 279, 3671-3679.                                                                 | 3.4 | 15        |
| 34 | Low Molecular Weight Fucoidan and Heparin Enhance the Basic Fibroblast Growth Factor-Induced<br>Tube Formation of Endothelial Cells through Heparan Sulfate-Dependent α6 Overexpression. Molecular<br>Pharmacology, 2003, 64, 696-702. | 2.3 | 71        |
| 35 | Characterization of the Specificity of Arginine-Specific Gingipains fromPorphyromonas gingivalisReveals Active Site Differences between Different Forms of the Enzymesâ€. Biochemistry, 2003, 42, 11693-11700.                         | 2.5 | 29        |
| 36 | Determination of the P1′, P2′ and P3′ subsite-specificity of factor Xa. International Journal of<br>Biochemistry and Cell Biology, 2003, 35, 221-225.                                                                                  | 2.8 | 17        |

Bernard Le Bonniec

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular Determinants of the Mechanism Underlying Acceleration of the Interaction between<br>Antithrombin and Factor Xa by Heparin Pentasaccharide. Journal of Biological Chemistry, 2002, 277,<br>15971-15978. | 3.4 | 23        |
| 38 | Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III. Biochemical Journal, 2002, 366, 435-446.               | 3.7 | 18        |
| 39 | The Stratagem Utilized by the Plasminogen Activator from the Snake <i>Trimeresurus stejnegeri</i> To<br>Escape Serpins. Biochemistry, 2002, 41, 8478-8484.                                                       | 2.5 | 21        |
| 40 | Mapping of the Catalytic Groove Preferences of Factor Xa Reveals an Inadequate Selectivity for Its<br>Macromolecule Substrates. Journal of Biological Chemistry, 2002, 277, 20527-20534.                         | 3.4 | 55        |
| 41 | Dose-effect relationship for several coagulation markers during administration of the direct<br>thrombin inhibitor S 18326 in healthy subjects. British Journal of Clinical Pharmacology, 2002, 53,<br>147-154.  | 2.4 | 4         |
| 42 | Structure of a Serpin-Enzyme Complex Probed by Cysteine Substitutions and Fluorescence Spectroscopy. Biophysical Journal, 2001, 80, 491-497.                                                                     | 0.5 | 8         |
| 43 | Electrostatic Steering and Ionic Tethering in the Formation of Thrombinâ^'Hirudin Complexes:  The Role of the Thrombin Anion-Binding Exosite-I. Biochemistry, 2001, 40, 4972-4979.                               | 2.5 | 49        |
| 44 | Implication of protein S thrombin-sensitive region with membrane binding via conformational changes in the γ-carboxyglutamic acid-rich domain. Biochemical Journal, 2001, 360, 499-506.                          | 3.7 | 15        |
| 45 | The dual role of thrombin's anion-binding exosite-l in the recognition and cleavage of the protease-activated receptor 1. FEBS Journal, 2001, 268, 70-77.                                                        | 0.2 | 37        |
| 46 | Implication of protein S thrombin-sensitive region with membrane binding via conformational changes in the Î <sup>3</sup> -carboxyglutamic acid-rich domain. Biochemical Journal, 2001, 360, 499.                | 3.7 | 10        |
| 47 | The Role of Glu192 in the Allosteric Control of the S2′ and S3′ Subsites of Thrombin. Journal of<br>Biological Chemistry, 2000, 275, 809-816.                                                                    | 3.4 | 15        |
| 48 | Cleaved antitrypsin polymers at atomic resolution. Protein Science, 2000, 9, 417-420.                                                                                                                            | 7.6 | 73        |
| 49 | Une histoire d'arroseur arrosé : dans la cascade, c'est la thrombine qui module la thrombomoduline<br>Medecine/Sciences, 2000, 16, 964.                                                                          | 0.2 | Ο         |
| 50 | Topology of the Stable Serpin-Protease Complexes Revealed by an Autoantibody That Fails to React<br>with the Monomeric Conformers of Antithrombin. Journal of Biological Chemistry, 1999, 274,<br>4586-4593.     | 3.4 | 27        |
| 51 | Thrombomodulin Modulates the Mitogenic Response to Thrombin of Human Umbilical Vein<br>Endothelial Cells. Thrombosis and Haemostasis, 1998, 79, 848-852.                                                         | 3.4 | 25        |
| 52 | Lonomia obliqua Caterpillar Spicules Trigger Human Blood Coagulation via Activation of Factor X and<br>Prothrombin. Thrombosis and Haemostasis, 1998, 79, 539-542.                                               | 3.4 | 56        |
| 53 | Intrinsic Specificity of the Reactive Site Loop of α1-Antitrypsin, α1-Antichymotrypsin, Antithrombin III, and<br>Protease Nexin I. Journal of Biological Chemistry, 1997, 272, 16268-16273.                      | 3.4 | 37        |
| 54 | Allosteric modulation of the activity of thrombin. Biochemical Journal, 1997, 321, 361-365.                                                                                                                      | 3.7 | 14        |

Bernard Le Bonniec

| #  | Article                                                                                                                                                                                            | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease. Journal of Molecular Biology, 1997, 265, 344-362.                               | 4.2 | 55        |
| 56 | The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin. EMBO Journal, 1997, 16, 2977-2984.                 | 7.8 | 81        |
| 57 | Characterization of the P2â€~ and P3â€~ Specificities of Thrombin Using Fluorescence-Quenched Substrates and Mapping of the Subsites by Mutagenesis,. Biochemistry, 1996, 35, 7114-7122.           | 2.5 | 90        |
| 58 | Role of the P2 Residue in Determining the Specificity of Serpins. Biochemistry, 1996, 35, 11461-11469.                                                                                             | 2.5 | 44        |
| 59 | Heparin enhances the catalytic activity of des-ETW-thrombin. Biochemical Journal, 1996, 315, 77-83.                                                                                                | 3.7 | 3         |
| 60 | Identification of Residues in Thrombin-Modulating Interactions with Antithrombin III and .alpha.1-Antitrypsin. Biochemistry, 1995, 34, 12241-12248.                                                | 2.5 | 54        |
| 61 | Mapping of the Thrombin des-ETW Conformation by Using Site-Directed Mutants of Hirudin. Evidence for the Induction of Nonlocal Modifications by Mutagenesis. Biochemistry, 1994, 33, 3959-3966.    | 2.5 | 16        |
| 62 | Contribution of interactions with the core domain of hirudin to the stability of its complex with thrombin. Biochemical Journal, 1994, 298, 507-510.                                               | 3.7 | 10        |
| 63 | [21] Protein C activation. Methods in Enzymology, 1993, 222, 359-385.                                                                                                                              | 1.0 | 62        |
| 64 | Glu-192Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin<br>Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7371-7375. | 7.1 | 159       |
| 65 | Analysis of ligand-binding data without knowledge of bound or free ligand molar concentration.<br>Analytical Biochemistry, 1988, 174, 280-290.                                                     | 2.4 | 2         |
| 66 | Functional identification of t-PA in crude and purified systems. Thrombosis Research, 1988, 50, 123-130.                                                                                           | 1.7 | 0         |
| 67 | Functional identification of t-PA in crude and purified systems. Thrombosis Research, 1988, 49, 123-130.                                                                                           | 1.7 | 2         |
| 68 | Measurement of glycated albumin in diabetic patients by biospecific affinity chromatography.<br>Biomedical Applications, 1987, 419, 75-83.                                                         | 1.7 | 9         |
| 69 | Proteolytic Derivatives of Thrombin. Annals of the New York Academy of Sciences, 1986, 485, 16-26.                                                                                                 | 3.8 | 31        |