List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430594/publications.pdf Version: 2024-02-01

EDIC C LAI

#	Article	IF	CITATIONS
1	Molecular and genetic dissection of recursive splicing. Life Science Alliance, 2022, 5, e202101063.	1.3	2
2	Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes and Development, 2022, 36, 225-240.	2.7	13
3	Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Frontiers in Genetics, 2022, 13, 848626.	1.1	7
4	miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Science Alliance, 2022, 5, e202101215.	1.3	10
5	A neural m6A/Ythdf pathway is required for learning and memory in Drosophila. Nature Communications, 2021, 12, 1458.	5.8	54
6	Kathryn Anderson (1952–2020). Cell, 2021, 184, 1123-1126.	13.5	0
7	ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing. PLoS Genetics, 2021, 17, e1009439.	1.5	32
8	The Exon Junction Complex and intron removal prevent re-splicing of mRNA. PLoS Genetics, 2021, 17, e1009563.	1.5	17
9	A comprehensive dataset of microRNA misexpression phenotypes in the Drosophila eye. Data in Brief, 2021, 36, 107037.	0.5	2
10	A comprehensive in vivo screen for anti-apoptotic miRNAs indicates broad capacities for oncogenic synergy. Developmental Biology, 2021, 475, 10-20.	0.9	9
11	A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Reports, 2021, 36, 109335.	2.9	6
12	Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors. Nature Ecology and Evolution, 2021, 5, 1613-1623.	3.4	31
13	Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3′ UTR Landscape in Drosophila. Molecular Cell, 2020, 80, 140-155.e6.	4.5	33
14	Mechanism and Function of Antiviral RNA Interference in Mice. MBio, 2020, 11, .	1.8	25
15	miRNAs and Neural Alternative Polyadenylation Specify the Virgin Behavioral State. Developmental Cell, 2020, 54, 410-423.e4.	3.1	20
16	XPO5 promotes primary miRNA processing independently of RanGTP. Nature Communications, 2020, 11, 1845.	5.8	21
17	Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci. Molecular Cell, 2020, 78, 303-316.e4.	4.5	35
18	Regulation of embryonic and adult neurogenesis by Ars2. Development (Cambridge), 2020, 147, .	1.2	10

#	Article	IF	CITATIONS
19	Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nature Communications, 2019, 10, 3682.	5.8	48
20	Transcriptional Regulation of the Glutamate/GABA/Glutamine Cycle in Adult Glia Controls Motor Activity and Seizures in Drosophila. Journal of Neuroscience, 2019, 39, 5269-5283.	1.7	26
21	BEN-solo factors partition active chromatin to ensure proper gene activation in Drosophila. Nature Communications, 2019, 10, 5700.	5.8	15
22	Short cryptic exons mediate recursive splicing in Drosophila. Nature Structural and Molecular Biology, 2018, 25, 365-371.	3.6	21
23	Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. Molecular Cell, 2018, 69, 265-278.e6.	4.5	56
24	The <i>mir-279/996</i> cluster represses receptor tyrosine kinase signaling to determine cell fates in the <i>Drosophila</i> eye. Development (Cambridge), 2018, 145, .	1.2	8
25	Deep experimental profiling of microRNA diversity, deployment, and evolution across the <i>Drosophila</i> genus. Genome Research, 2018, 28, 52-65.	2.4	39
26	miRNA suppression of a Notch repressor directs non-neuronal fate in <i>Drosophila</i> mechanosensory organs. Journal of Cell Biology, 2018, 217, 571-583.	2.3	6
27	The hpRNA/RNAi Pathway Is Essential to Resolve Intragenomic Conflict in the Drosophila Male Germline. Developmental Cell, 2018, 46, 316-326.e5.	3.1	67
28	DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625.	2.3	24
29	Genome-wide profiling of the 3' ends of polyadenylated RNAs. Methods, 2017, 126, 86-94.	1.9	20
30	Characterization of a TUTase/RNase complex required for <i>Drosophila</i> gametogenesis. Rna, 2017, 23, 284-296.	1.6	12
31	New genes often acquire male-specific functions but rarely become essential in <i>Drosophila</i> . Genes and Development, 2017, 31, 1841-1846.	2.7	71
32	Genome-wide identification of Grainy head targets in <i>Drosophila</i> reveals regulatory interactions with the POU-domain transcription factor, Vvl. Development (Cambridge), 2017, 144, 3145-3155.	1.2	24
33	The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 2017, 8, 15737.	5.8	154
34	Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biology, 2017, 18, 229.	3.8	66
35	Neural specificity of the RNA binding protein Elav is achieved by post-transcriptional repression in non-neural tissues. Development (Cambridge), 2016, 143, 4474-4485.	1.2	16
36	miR-124 Regulates Diverse Aspects of Rhythmic Behavior in <i>Drosophila</i> . Journal of Neuroscience, 2016, 36, 3414-3421.	1.7	32

#	Article	IF	CITATIONS
37	Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of Drosophila mir-279 and mir-996. PLoS Genetics, 2015, 11, e1005245.	1.5	28
38	An extensive allelic series of <i>Drosophila kae1</i> mutants reveals diverse and tissue-specific requirements for t6A biogenesis. Rna, 2015, 21, 2103-2118.	1.6	18
39	Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family. Genes and Development, 2015, 29, 48-62.	2.7	41
40	Adaptive Regulation of Testis Gene Expression and Control of Male Fertility by the Drosophila Hairpin RNA Pathway. Molecular Cell, 2015, 57, 165-178.	4.5	52
41	A deeply conserved, noncanonical miRNA hosted by ribosomal DNA. Rna, 2015, 21, 375-384.	1.6	46
42	Selective Suppression of the Splicing-Mediated MicroRNA Pathway by the Terminal Uridyltransferase Tailor. Molecular Cell, 2015, 59, 217-228.	4.5	58
43	Two decades of miRNA biology: lessons and challenges. Rna, 2015, 21, 675-677.	1.6	57
44	A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nature Communications, 2015, 6, 7279.	5.8	63
45	Hox miRNA regulation within the Drosophila Bithorax complex: Patterning behavior. Mechanisms of Development, 2015, 138, 151-159.	1.7	19
46	IsoSCM: improved and alternative 3′ UTR annotation using multiple change-point inference. Rna, 2015, 21, 14-27.	1.6	54
47	Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates. PLoS Computational Biology, 2015, 11, e1004441.	1.5	70
48	Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. Cell Reports, 2014, 9, 1966-1980.	2.9	866
49	A Signaling-Induced Switch in Dicer Localization and Function. Developmental Cell, 2014, 31, 523-524.	3.1	2
50	Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Research, 2014, 42, 1987-2002.	6.5	23
51	Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in <i>Drosophila</i> embryos. Fly, 2014, 8, 43-51.	0.9	16
52	Diversity of miRNAs, siRNAs, and piRNAs across 25 <i>Drosophila</i> cell lines. Genome Research, 2014, 24, 1236-1250.	2.4	66
53	Diversity and dynamics of the Drosophila transcriptome. Nature, 2014, 512, 393-399.	13.7	647
54	Diverse modes of evolutionary emergence and flux of conserved microRNA clusters. Rna, 2014, 20, 1850-1863.	1.6	40

#	Article	IF	CITATIONS
55	The Hippo Pathway Regulates Hematopoiesis in Drosophila melanogaster. Current Biology, 2014, 24, 2673-2680.	1.8	45
56	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	13.7	289
57	A Genome-Wide Survey of Sexually Dimorphic Expression of Drosophila miRNAs Identifies the Steroid Hormone-Induced miRNA let-7 as a Regulator of Sexual Identity. Genetics, 2014, 198, 647-668.	1.2	68
58	Adaptive evolution of testis-specific, recently evolved, clustered miRNAs in <i>Drosophila</i> . Rna, 2014, 20, 1195-1209.	1.6	47
59	Alternative polyadenylation in the nervous system: To what lengths will 3′ UTR extensions take us?. BioEssays, 2014, 36, 766-777.	1.2	51
60	Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends in Cell Biology, 2014, 24, 546-553.	3.6	40
61	Homeotic Function of Drosophila Bithorax-Complex miRNAs Mediates Fertility by Restricting Multiple Hox Genes and TALE Cofactors in the CNS. Developmental Cell, 2014, 29, 635-648.	3.1	40
62	MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature Cell Biology, 2013, 15, 1153-1163.	4.6	145
63	Drosophila piwi Mutants Exhibit Germline Stem Cell Tumors that Are Sustained by Elevated Dpp Signaling. Current Biology, 2013, 23, 1442-1448.	1.8	63
64	The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the <i>Drosophila</i> testis. Development (Cambridge), 2013, 140, 2904-2916.	1.2	36
65	The impact of age, biogenesis, and genomic clustering on <i>Drosophila</i> microRNA evolution. Rna, 2013, 19, 1295-1308.	1.6	35
66	Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster. Current Biology, 2013, 23, 523-528.	1.8	47
67	BEND6 is a nuclear antagonist of Notch signaling during self-renewal of neural stem cells. Development (Cambridge), 2013, 140, 1892-1902.	1.2	31
68	Homeostatic control of Argonaute stability by microRNA availability. Nature Structural and Molecular Biology, 2013, 20, 789-795.	3.6	129
69	Adult-specific functions of animal microRNAs. Nature Reviews Genetics, 2013, 14, 535-548.	7.7	308
70	The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors. Genes and Development, 2013, 27, 602-614.	2.7	70
71	Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Research, 2013, 23, 812-825.	2.4	308
72	Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes and Development, 2013, 27, 778-792.	2.7	57

#	Article	IF	CITATIONS
73	Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants. PLoS Genetics, 2012, 8, e1002515.	1.5	48
74	Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Research, 2012, 22, 1634-1645.	2.4	169
75	Functional parameters of Dicer-independent microRNA biogenesis. Rna, 2012, 18, 945-957.	1.6	81
76	RNase III-independent microRNA biogenesis in mammalian cells. Rna, 2012, 18, 2166-2173.	1.6	34
77	A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development (Cambridge), 2012, 139, 2821-2831.	1.2	82
78	Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. Rna, 2012, 18, 177-192.	1.6	64
79	Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Reports, 2012, 1, 277-289.	2.9	201
80	Exploiting Drosophila Genetics to Understand MicroRNA Function and Regulation. Current Topics in Developmental Biology, 2012, 99, 201-235.	1.0	20
81	Ars2 maintains neural stem-cell identity through direct transcriptional activation of Sox2. Nature, 2012, 481, 195-198.	13.7	69
82	Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Developmental Biology, 2012, 365, 384-394.	0.9	52
83	Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biology, 2011, 12, 221.	13.9	393
84	Control of microRNA biogenesis and transcription by cell signaling pathways. Current Opinion in Genetics and Development, 2011, 21, 504-510.	1.5	53
85	Mirtrons: microRNA biogenesis via splicing. Biochimie, 2011, 93, 1897-1904.	1.3	246
86	Alternative miRNA Biogenesis Pathways and the Interpretation of Core miRNA Pathway Mutants. Molecular Cell, 2011, 43, 892-903.	4.5	427
87	Computational and experimental identification of mirtrons in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> . Genome Research, 2011, 21, 286-300.	2.4	71
88	R2D2 Organizes Small Regulatory RNA Pathways in <i>Drosophila^{â^‡â€}</i> . Molecular and Cellular Biology, 2011, 31, 884-896.	1.1	57
89	Deep annotation of <i>Drosophila melanogaster</i> microRNAs yields insights into their processing, modification, and emergence. Genome Research, 2011, 21, 203-215.	2.4	207
90	A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. Rna, 2011, 17, 1997-2010.	1.6	28

#	Article	IF	CITATIONS
91	RNAi in Xenopus: look before you leap. Genes and Development, 2011, 25, 1105-1108.	2.7	2
92	RNA silencing in Monterey. Development (Cambridge), 2011, 138, 3093-3102.	1.2	5
93	miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the United States of America, 2011, 108, 9232-9237.	3.3	615
94	Widespread regulatory activity of vertebrate microRNA* species. Rna, 2011, 17, 312-326.	1.6	293
95	Insensitive is a corepressor for Suppressor of Hairless and regulates Notch signalling during neural development. EMBO Journal, 2011, 30, 3120-3133.	3.5	21
96	The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO Journal, 2010, 29, 1830-1839.	3.5	72
97	Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature, 2010, 467, 1128-1132.	13.7	386
98	Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nature Genetics, 2010, 42, 6-9.	9.4	105
99	Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. PLoS ONE, 2010, 5, e15264.	1.1	32
100	Conserved vertebrate <i>mir-451</i> provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15163-15168.	3.3	389
101	Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proceedings of the United States of America, 2010, 107, 1606-1611.	3.3	419
102	Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle, 2010, 9, 4455-4460.	1.3	102
103	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	6.0	912
104	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	6.0	1,124
105	MicroRNA Biogenesis via Splicing and Exosome-Mediated Trimming in Drosophila. Molecular Cell, 2010, 38, 900-907.	4.5	147
106	A Deathly DNase Activity for Dicer. Developmental Cell, 2010, 18, 692-694.	3.1	3
107	The Drosophila miR-310 Cluster Negatively Regulates Synaptic Strength at the Neuromuscular Junction. Neuron, 2010, 68, 879-893.	3.8	76
108	A view from Drosophila: Multiple biological functions for individual microRNAs. Seminars in Cell and Developmental Biology, 2010, 21, 745-753.	2.3	35

#	Article	IF	CITATIONS
109	miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Developmental Biology, 2010, 338, 63-73.	0.9	75
110	A <i>Drosophila pasha</i> Mutant Distinguishes the Canonical MicroRNA and Mirtron Pathways. Molecular and Cellular Biology, 2009, 29, 861-870.	1.1	59
111	Frequent Unanticipated Alleles of <i>lethal giant larvae</i> in Drosophila Second Chromosome Stocks. Genetics, 2009, 182, 407-410.	1.2	28
112	Abundant primary piRNAs, endo-siRNAs, and microRNAs in a <i>Drosophila</i> ovary cell line. Genome Research, 2009, 19, 1776-1785.	2.4	164
113	A Broadly Conserved Pathway Generates 3′UTR-Directed Primary piRNAs. Current Biology, 2009, 19, 2066-2076.	1.8	304
114	Unlocking the secrets of the genome. Nature, 2009, 459, 927-930.	13.7	744
115	Distinct Mechanisms for MicroRNA Strand Selection by Drosophila Argonautes. Molecular Cell, 2009, 36, 431-444.	4.5	262
116	Dicing of viral replication intermediates during silencing of latent <i>Drosophila</i> viruses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5270-5275.	3.3	101
117	The evolution and functional diversification of animal microRNA genes. Cell Research, 2008, 18, 985-996.	5.7	134
118	The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature, 2008, 453, 803-806.	13.7	352
119	The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nature Structural and Molecular Biology, 2008, 15, 354-363.	3.6	461
120	Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nature Structural and Molecular Biology, 2008, 15, 581-590.	3.6	176
121	Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics, 2008, 9, 831-842.	7.7	707
122	Endogenous small interfering RNAs in animals. Nature Reviews Molecular Cell Biology, 2008, 9, 673-678.	16.1	340
123	Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons. Current Biology, 2008, 18, 795-802.	1.8	321
124	microRNA control of cell-cell signaling during development and disease. Cell Cycle, 2008, 7, 2327-2332.	1.3	84
125	Lessons from microRNA mutants in worms, flies and mice. Cell Cycle, 2008, 7, 2500-2508.	1.3	46
126	Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes and Development, 2008, 22, 26-36.	2.7	185

#	Article	IF	CITATIONS
127	The long and short of inverted repeat genes in animals: MicroRNAs, mirtrons and hairpin RNAs. Cell Cycle, 2008, 7, 2840-2845.	1.3	69
128	Hybrid Neurons in a MicroRNA Mutant Are Putative Evolutionary Intermediates in Insect CO ₂ Sensory Systems. Science, 2008, 319, 1256-1260.	6.0	98
129	Transgenic Inhibitors of RNA Interference in Drosophila. Fly, 2007, 1, 311-316.	0.9	15
130	The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila. Cell, 2007, 130, 89-100.	13.5	879
131	Mammalian Mirtron Genes. Molecular Cell, 2007, 28, 328-336.	4.5	675
132	Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18151-18156.	3.3	86
133	Evolution, biogenesis, expression, and target predictions of a substantially expanded set of <i>Drosophila</i> microRNAs. Genome Research, 2007, 17, 1850-1864.	2.4	540
134	Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007, 450, 219-232.	13.7	573
135	miRNAs: Whys and Wherefores of miRNA-Mediated Regulation. Current Biology, 2005, 15, R458-R460.	1.8	69
136	Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes and Development, 2005, 19, 1067-1080.	2.7	259
137	Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4613-4618.	3.3	77
138	The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development (Cambridge), 2005, 132, 2319-2332.	1.2	142
139	The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes and Development, 2005, 19, 2947-2952.	2.7	150
140	Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18017-18022.	3.3	252
141	Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. Rna, 2004, 10, 171-175.	1.6	82
142	Notch signaling: control of cell communication and cell fate. Development (Cambridge), 2004, 131, 965-973.	1.2	913
143	Predicting and validating microRNA targets. Genome Biology, 2004, 5, 115.	13.9	124
144	A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Developmental Biology, 2004, 269, 1-17.	0.9	139

#	Article	IF	CITATIONS
145	RNA Sensors and Riboswitches: Self-Regulating Messages. Current Biology, 2003, 13, R285-R291.	1.8	74
146	microRNAs: Runts of the Genome Assert Themselves. Current Biology, 2003, 13, R925-R936.	1.8	239
147	Computational identification of Drosophila microRNA genes. Genome Biology, 2003, 4, R42.	13.9	624
148	Lipid rafts make for slippery platforms. Journal of Cell Biology, 2003, 162, 365-370.	2.3	150
149	RB pockets the cell cycle. Journal of Cell Biology, 2003, 161, 12-12.	2.3	0
150	Where new neurons come from. Journal of Cell Biology, 2003, 161, 13-13.	2.3	0
151	Life in a low calcium home. Journal of Cell Biology, 2003, 161, 12-13.	2.3	0
152	Lamas in loops. Journal of Cell Biology, 2003, 161, 13-13.	2.3	0
153	APP causes an energy crisis. Journal of Cell Biology, 2003, 161, 12-12.	2.3	0
154	Drosophila Tufted Is a Gain-of-Function Allele of the Proneural Gene amos. Genetics, 2003, 163, 1413-1425.	1.2	17
155	Protein Degradation: Four E3s For The Notch Pathway. Current Biology, 2002, 12, R74-R78.	1.8	161
156	Notch Cleavage: Nicastrin Helps Presenilin Make the Final Cut. Current Biology, 2002, 12, R200-R202.	1.8	23
157	Developmental Signaling: Shrimp and Strawberries Help Flies Make Cones. Current Biology, 2002, 12, R722-R724.	1.8	7
158	Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 2002, 30, 363-364.	9.4	1,294
159	Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Reports, 2002, 3, 840-845.	2.0	208
160	neuralized Functions Cell-Autonomously to Regulate a Subset of Notch-Dependent Processes during Adult Drosophila Development. Developmental Biology, 2001, 231, 217-233.	0.9	85
161	Xenopus Neuralized Is a Ubiquitin Ligase that Interacts with XDelta1 and Regulates Notch Signaling. Developmental Cell, 2001, 1, 795-806.	3.1	209
162	Drosophila Neuralized Is a Ubiquitin Ligase that Promotes the Internalization and Degradation of Delta. Developmental Cell, 2001, 1, 783-794.	3.1	302

#	Article	IF	CITATIONS
163	Discrete Enhancer Elements Mediate Selective Responsiveness of Enhancer of split Complex Genes to Common Transcriptional Activators. Developmental Biology, 1999, 213, 33-53.	0.9	173
164	Regulation of Drosophila Neurogenesis byRNA:RNA Duplexes?. Cell, 1998, 93, 1103-1104.	13.5	36
165	Seeing is believing: strategies for studying microRNA expression. , 0, , 42-57.		0
166	Regulated dicing of <i>pre-mir-144</i> via reshaping of its terminal loop. Nucleic Acids Research, 0, , .	6.5	8