Gaurav Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430573/publications.pdf

Version: 2024-02-01

623734 580821 36 660 14 25 h-index citations g-index papers 36 36 36 1169 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurological Insights of COVID-19 Pandemic. ACS Chemical Neuroscience, 2020, 11, 1206-1209.	3 . 5	126
2	Biodegradable Neuro-Compatible Peptide Hydrogel Promotes Neurite Outgrowth, Shows Significant Neuroprotection, and Delivers Anti-Alzheimer Drug. ACS Applied Materials & Drug; Interfaces, 2017, 9, 5067-5076.	8.0	57
3	Apoferritin Nanocage Delivers Combination of Microtubule and Nucleus Targeting Anticancer Drugs. ACS Applied Materials & Drugs, 1016, 8, 30824-30832.	8.0	36
4	Spatial Position Regulates Power of Tryptophan: Discovery of a Major-Groove-Specific Nuclear-Localizing, Cell-Penetrating Tetrapeptide. Journal of the American Chemical Society, 2018, 140, 1697-1714.	13.7	36
5	An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Advances, 2020, 10, 28243-28266.	3.6	34
6	Peptide-Based Acetylcholinesterase Inhibitor Crosses the Blood-Brain Barrier and Promotes Neuroprotection. ACS Chemical Neuroscience, 2018, 9, 2838-2848.	3 . 5	30
7	Neuro-Regenerative Choline-Functionalized Injectable Graphene Oxide Hydrogel Repairs Focal Brain Injury. ACS Chemical Neuroscience, 2019, 10, 1535-1543.	3.5	29
8	Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomaterials Science and Engineering, 2020, 6, 2287-2296.	5.2	27
9	Crafting of Neuroprotective Octapeptide from Taxol-Binding Pocket of \hat{l}^2 -Tubulin. ACS Chemical Neuroscience, 2018, 9, 615-625.	3.5	25
10	Cancer Cell Specific Delivery of Photosystem I Through Integrin Targeted Liposome Shows Significant Anticancer Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 176-188.	8.0	23
11	Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Physical Chemistry Chemical Physics, 2016, 18, 18381-18390.	2.8	20
12	Regioselective synthesis of naphthoquinone/naphthoquinol–carbohydrate hybrids by [4 + 2] anionic annulations and studies on their cytotoxicity. Organic and Biomolecular Chemistry, 2016, 14, 10636-10647.	2.8	19
13	Designed Tetrapeptide Interacts with Tubulin and Microtubule. Langmuir, 2018, 34, 1123-1132.	3.5	16
14	The role of isoaspartate in fibrillation and its prevention by Protein-L-isoaspartyl methyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129500.	2.4	16
15	Discovery of Neuroregenerative Peptoid from Amphibian Neuropeptide That Inhibits Amyloid-β Toxicity and Crosses Blood–Brain Barrier. ACS Chemical Neuroscience, 2019, 10, 1355-1368.	3.5	15
16	Potential Neuroprotective Peptide Emerged from Dual Neurotherapeutic Targets: A Fusion Approach for the Development of Anti-Alzheimer's Lead. ACS Chemical Neuroscience, 2019, 10, 2609-2620.	3 . 5	14
17	Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity. ACS Omega, 2020, 5, 18958-18967.	3 . 5	14
18	Novel tubulin-targeted cell penetrating antimitotic octapeptide. Chemical Communications, 2016, 52, 12657-12660.	4.1	13

#	Article	IF	CITATIONS
19	Genesis of Neuroprotective Peptoid from AÎ 2 30â \in "34 Inhibits AÎ 2 Aggregation and AChE Activity. ACS Chemical Neuroscience, 2018, 9, 2929-2940.	3.5	13
20	Dual-Arm Nanocapsule Targets Neuropilin-1 Receptor and Microtubule: A Potential Nanomedicine Platform. Molecular Pharmaceutics, 2019, 16, 2522-2531.	4.6	13
21	Neurosphere Development from Hippocampal and Cortical Embryonic Mixed Primary Neuron Culture: A Potential Platform for Screening Neurochemical Modulator. ACS Chemical Neuroscience, 2018, 9, 2870-2878.	3.5	12
22	A dual functional liposome specifically targets melanoma cells through integrin and ephrin receptors. RSC Advances, 2016, 6, 113487-113491.	3.6	10
23	Effect of gold nanoparticles on the structure and neuroprotective function of protein L-isoaspartyl methyltransferase (PIMT). Scientific Reports, 2021, 11, 14296.	3.3	9
24	Matrix metalloproteinase targeted peptide vesicles for delivering anticancer drugs. Chemical Communications, 2018, 54, 9309-9312.	4.1	8
25	Why Microtubules Should Be Considered as One of the Supplementary Targets for Designing Neurotherapeutics. ACS Chemical Neuroscience, 2019, 10, 1118-1120.	3.5	6
26	Human Serum Albumin-Inspired Glycopeptide-Based Multifunctional Inhibitor of Amyloid- \hat{l}^2 Toxicity. ACS Omega, 2020, 5, 18628-18641.	3.5	6
27	Power of Tyrosine Assembly in Microtubule Stabilization and Neuroprotection Fueled by Phenol Appendages. ACS Chemical Neuroscience, 2019, 10, 1506-1516.	3.5	5
28	Methanolic Extract of Papaya Leaves Shows Neuroprotective Effect. ChemistrySelect, 2017, 2, 9454-9457.	1.5	4
29	Tripodal molecular propellers perturb microtubule dynamics: indole acts as a blade and plays a crucial role in anticancer activity. Chemical Communications, 2019, 55, 2356-2359.	4.1	4
30	Glial-Neuron Transformation by "Chemical Cocktail― ACS Chemical Neuroscience, 2019, 10, 42-43.	3.5	4
31	Increasing incidence of colorectal cancer among Indians: Concerns and the way forward. Cancer Research Statistics and Treatment, 2021, 4, 771.	0.6	4
32	Generation of Neurospheres from Mixed Primary Hippocampal and Cortical Neurons Isolated from E14-E16 Sprague Dawley Rat Embryo. Journal of Visualized Experiments, 2019, , .	0.3	3
33	Fluorine Substituted Proline Enhances the Tubulin Binding Potential of a Tetrapeptide at the GTP Binding Pocket Causing the Inhibition of Microtubule Motility and an Antimitotic Effect. Journal of Physical Chemistry B, 2021, 125, 8768-8780.	2.6	3
34	Probing the conformational dynamics of photosystem I in unconfined and confined spaces. Physical Chemistry Chemical Physics, 2018, 20, 449-455.	2.8	2
35	Mitochondria-Targeted New Blue Light-Emitting Fluorescent Molecular Probe. ACS Omega, 2019, 4, 9361-9366.	3.5	2
36	Power of an Organic Electron Acceptor in Modulation of Intracellular Mitochondrial Reactive Oxygen Species: Inducing JNK- and Caspase-Dependent Apoptosis of Cancer Cells. ACS Omega, 2021, 6, 7815-7828.	3.5	2