Yehia Z Gad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430536/publications.pdf Version: 2024-02-01

Υεμιλ 7 Ωλη

#	Article	lF	CITATIONS
1	Insights from ancient DNA analysis of Egyptian human mummies: clues to disease and kinship. Human Molecular Genetics, 2021, 30, R24-R28.	2.9	8
2	Mutational spectrum of <i>NF1</i> gene in 24 unrelated Egyptian families with neurofibromatosis type 1. Molecular Genetics & Genomic Medicine, 2021, 9, e1631.	1.2	5
3	Developing a Road Map to Spread Genomic Knowledge in Africa: 10th Conference of the African Society of Human Genetics, Cairo, Egypt. American Journal of Tropical Medicine and Hygiene, 2020, 102, 719-723.	1.4	6
4	Extracellular miR-145, miR-223 and miR-326 expression signature allow for differential diagnosis of immune-mediated neuroinflammatory diseases. Journal of the Neurological Sciences, 2017, 383, 188-198.	0.6	36
5	Biochemical Analysis of Four Missense Mutations in the <i>HSD17B3</i> Gene Associated with 46, XY Disorders of Sex Development in Egyptian Patients. Journal of Sexual Medicine, 2017, 14, 1165-1174.	0.6	9
6	Mutational Profile of 10 Afflicted Egyptian Families with 17-β-HSD-3 Deficiency. Sexual Development, 2016, 10, 66-73.	2.0	4
7	First insights into the metagenome of Egyptian mummies using next-generation sequencing. Journal of Applied Genetics, 2013, 54, 309-325.	1.9	56
8	A Novel Nonsense Mutation in Exon 1 ofHSD17B3Gene in an Egyptian 46,XY Adult Female Presenting with Primary Amenorrhea. Sexual Development, 2013, 7, 277-281.	2.0	6
9	Revisiting the harem conspiracy and death of Ramesses III: anthropological, forensic, radiological, and genetic study. BMJ, The, 2012, 345, e8268-e8268.	6.0	28
10	Ancestry and Pathology in King Tutankhamun's Family. JAMA - Journal of the American Medical Association, 2010, 303, 638.	7.4	216
11	King Tutankhamun's Family and Demise—Reply. JAMA - Journal of the American Medical Association, 2010, 303, 2471.	7.4	4
12	Detection of the G34R Mutation in the 5 Alpha Reductase 2 Gene by Allele Specific PCR and Its Linkage to the 89L Allele among Egyptian Cases. Sexual Development, 2007, 1, 293-296.	2.0	11
13	A Novel Double Mutation in the Luteinizing Hormone Receptor in a Kindred with Familial Leydig Cell Hypoplasia and Male Pseudohermaphroditism. Endocrine Research, 2005, 31, 307-323.	1.2	14
14	The milder phenotype of the dystrophin gene double deletions. Acta Neurologica Scandinavica, 2003, 107, 400-404.	2.1	8
15	Molecular analysis of 5αâ€reductase type 2 gene in eight unrelated egyptian children with suspected 5αâ€reductase deficiency: prevalence of the G34R mutation. Clinical Endocrinology, 2003, 58, 627-631.	2.4	56
16	A novel point mutation of the androgen receptor (F804L) in an Egyptian newborn with complete androgen insensitivity associated with congenital glaucoma and hypertrophic pyloric stenosis. Clinical Genetics, 2002, 63, 59-63.	2.0	10
17	Schistosoma hematobium soluble egg antigens induce proliferation of urothelial and endothelial cells. World Journal of Urology, 2001, 19, 263-266.	2.2	14
18	DNA Copy Number Changes in Schistosoma-Associated and Non-Schistosoma-Associated Bladder Cancer. American Journal of Pathology, 2000, 156, 871-878.	3.8	40

Yehia Z Gad

#	Article	IF	CITATIONS
19	5αâ€Reductase deficiency in patients with micropenis. Journal of Inherited Metabolic Disease, 1997, 20, 95-101.	3.6	23
20	DIHYDROTESTOSTERONE REGULATES PLASMA SEXâ€HORMONEâ€BINDING GLOBULIN IN PREPUBERTAL MALES. Clinical Endocrinology, 1989, 30, 279-284.	2.4	12
21	Studies of up-regulation of androgen receptors in genital skin fibroblasts. Molecular and Cellular Endocrinology, 1988, 57, 205-213.	3.2	26
22	Familial Leydig Cell Hypoplasia as a Cause of Male Pseudohermaphroditism. Human Heredity, 1987, 37, 36-40.	0.8	30