Frans Bongers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430148/publications.pdf

Version: 2024-02-01

13865 8630 23,251 179 67 146 citations h-index g-index papers 187 187 187 18404 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489
2	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	27.8	763
3	LEAF TRAITS ARE GOOD PREDICTORS OF PLANT PERFORMANCE ACROSS 53 RAIN FOREST SPECIES. Ecology, 2006, 87, 1733-1743.	3.2	684
4	Functional traits and environmental filtering drive community assembly in a speciesâ€rich tropical system. Ecology, 2010, 91, 386-398.	3.2	447
5	Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 273-289.	4.0	441
6	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	10.3	423
7	Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 2011, 14, 397-406.	6.4	421
8	Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 2017, 92, 326-340.	10.4	410
9	ARCHITECTURE OF 54 MOIST-FOREST TREE SPECIES: TRAITS, TRADE-OFFS, AND FUNCTIONAL GROUPS. Ecology, 2006, 87, 1289-1301.	3.2	406
10	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	5.8	365
11	No growth stimulation of tropical trees by 150Âyears of CO2 fertilization but water-use efficiencyÂincreased. Nature Geoscience, 2015, 8, 24-28.	12.9	348
12	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
13	Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 2011, 34, 137-148.	5.7	308
14	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291
15	Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8013-8018.	7.1	272
16	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
17	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	9.5	254
18	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251

#	Article	IF	CITATIONS
19	Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 2013, 94, 1211-1216.	3.2	239
20	Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169, 895-904.	2.0	216
21	Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology, 2005, 93, 1115-1125.	4.0	212
22	Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. Journal of Ecology, 2005, 93, 256-267.	4.0	208
23	A Standard Protocol for Liana Censuses 1. Biotropica, 2006, 38, 256-261.	1.6	207
24	Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management, 2011, 262, 1648-1657.	3.2	203
25	Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 2011, 99, 254-264.	4.0	202
26	Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 2015, 96, 1242-1252.	3.2	200
27	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
28	Loss of secondaryâ€forest resilience by landâ€use intensification in the <scp>A</scp> mazon. Journal of Ecology, 2015, 103, 67-77.	4.0	194
29	ARCHITECTURE OF 53 RAIN FOREST TREE SPECIES DIFFERING IN ADULT STATURE AND SHADE TOLERANCE. Ecology, 2003, 84, 602-608.	3.2	191
30	The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters, 2009, 12, 798-805.	6.4	190
31	Successional Change and Resilience of a Very Dry Tropical Deciduous Forest Following Shifting Agriculture. Biotropica, 2008, 40, 422-431.	1.6	185
32	Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 2011, 99, 1431-1440.	4.0	180
33	How People Domesticated Amazonian Forests. Frontiers in Ecology and Evolution, 2018, 5, .	2.2	174
34	Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 2011, 27, 477-489.	1.1	172
35	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
36	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144

#	Article	IF	Citations
37	Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology, 2008, 24, 355-366.	1.1	140
38	Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 2012, 100, 1453-1463.	4.0	138
39	Annual Rainfall and Seasonality Predict Panâ€ŧropical Patterns of Liana Density and Basal Area. Biotropica, 2010, 42, 309-317.	1.6	134
40	The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. Journal of Biogeography, 2003, 30, 1381-1390.	3.0	130
41	Distribution patterns of tropical woody species in response to climatic and edaphic gradients. Journal of Ecology, 2012, 100, 253-263.	4.0	128
42	Community dynamics during early secondary succession in Mexican tropical rain forests. Journal of Tropical Ecology, 2006, 22, 663-674.	1.1	125
43	Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?. Forest Ecology and Management, 2013, 303, 35-45.	3.2	125
44	Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 267-275.	2.7	123
45	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
46	The importance of biodiversity and dominance for multiple ecosystem functions in a humanâ€modified tropical landscape. Ecology, 2016, 97, 2772-2779.	3.2	119
47	Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. American Journal of Botany, 1998, 85, 266-272.	1.7	117
48	Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia, 2009, 161, 25-33.	2.0	117
49	The odd man out? Might climate explain the lower tree $\hat{l}\pm\hat{a}$ ediversity of African rain forests relative to Amazonian rain forests?. Journal of Ecology, 2007, 95, 1058-1071.	4.0	115
50	Waterâ€use advantage for lianas over trees in tropical seasonal forests. New Phytologist, 2015, 205, 128-136.	7.3	115
51	Crown development in tropical rain forest trees: patterns with tree height and light availability. Journal of Ecology, 2001, 89, 1-13.	4.0	113
52	Changing drivers of species dominance during tropical forest succession. Functional Ecology, 2014, 28, 1052-1058.	3.6	111
53	Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 89-96.	2.7	110
54	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	7.8	107

#	Article	IF	Citations
55	Effects of livestock exclusion on tree regeneration in church forests of Ethiopia. Forest Ecology and Management, 2009, 257, 765-772.	3.2	102
56	Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. PLoS ONE, 2015, 10, e0123741.	2.5	102
57	The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. Journal of Applied Ecology, 2006, 43, 1188-1195.	4.0	96
58	Species Dynamics During Early Secondary Forest Succession: Recruitment, Mortality and Species Turnover. Biotropica, 2007, 39, 610-619.	1.6	94
59	Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management. Science of the Total Environment, 2016, 551-552, 404-414.	8.0	93
60	Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. Journal of Vegetation Science, 2010, 21, 938-948.	2.2	92
61	Natural forest regeneration and ecological restoration in humanâ€modified tropical landscapes. Biotropica, 2016, 48, 745-757.	1.6	91
62	Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 79-87.	2.7	89
63	Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. Forest Ecology and Management, 2014, 323, 65-78.	3.2	89
64	Regeneration of canopy tree species at five sites in West African moist forest. Forest Ecology and Management, 1996, 84, 61-69.	3.2	88
65	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	86
66	Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology and Evolution, 2021, 5, 1594-1603.	7.8	83
67	Biomass partitioning and root morphology of savanna trees across a water gradient. Journal of Ecology, 2012, 100, 1113-1121.	4.0	80
68	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	9.5	78
69	Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio, 2020, 49, 74-84.	5.5	68
70	Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecology, 2001, 153, 279-292.	1.6	66
71	Drivers of tree carbon storage in subtropical forests. Science of the Total Environment, 2019, 654, 684-693.	8.0	65
72	Land use as a filter for species composition in Amazonian secondary forests. Journal of Vegetation Science, 2016, 27, 1104-1116.	2.2	63

#	Article	IF	Citations
73	The role of landâ€use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 2021, 96, 1114-1134.	10.4	63
74	Limitations to sustainable frankincense production: blocked regeneration, high adult mortality and declining populations. Journal of Applied Ecology, 2012, 49, 164-173.	4.0	62
75	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
76	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
77	Spatial distribution of gaps along three catenas in the moist forest of $Ta\tilde{A}^-$ National Park, Ivory Coast. Journal of Tropical Ecology, 1994, 10, 385-398.	1.1	58
78	Frankincense tree recruitment failed over the past half century. Forest Ecology and Management, 2013, 304, 65-72.	3.2	58
79	Distribution of the frankincense tree Boswellia papyrifera in Eritrea: the role of environment and land use. Journal of Biogeography, 2006, 33, 524-535.	3.0	56
80	Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees. Annals of Botany, 2007, 100, 831-838.	2.9	56
81	Tree Regeneration in Church Forests of Ethiopia: Effects of Microsites and Management. Biotropica, 2009, 41, 110-119.	1.6	55
82	Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. Journal of Tropical Ecology, 2010, 26, 497-508.	1.1	55
83	Swiddens under transition: Consequences of agricultural intensification in the Amazon. Agriculture, Ecosystems and Environment, 2016, 218, 116-125.	5.3	55
84	Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLoS ONE, 2017, 12, e0181092.	2.5	54
85	Methods to assess tropical rain forest canopy structure: an overview. Plant Ecology, 2001, 153, 263-277.	1.6	53
86	Diversity and production of Ethiopian dry woodlands explained by climate- and soil-stress gradients. Forest Ecology and Management, 2011, 261, 1499-1509.	3.2	53
87	Plant Functional Traits and the Distribution of West African Rain Forest Trees along the Rainfall Gradient. Biotropica, 2011, 43, 552-561.	1.6	52
88	Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 2014, 114, 315-324.	2.9	52
89	Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana. Journal of Tropical Ecology, 1998, 14, 119-137.	1.1	50
90	The Potential of Tree Rings for the Study of Forest Succession in Southern Mexico. Biotropica, 2009, 41, 186-195.	1.6	50

#	Article	IF	CITATIONS
91	Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 2015, 103, 1276-1290.	4.0	50
92	Rainfall and temperature affect tree species distribution in Ghana. Journal of Tropical Ecology, 2014, 30, 435-446.	1.1	48
93	No evidence for consistent longâ€term growth stimulation of 13 tropical tree species: results from treeâ€ring analysis. Global Change Biology, 2015, 21, 3762-3776.	9.5	47
94	Photosynthetic induction in saplings of three shade-tolerant tree species: comparing understorey and gap habitats in a French Guiana rain forest. Oecologia, 2000, 125, 331-340.	2.0	45
95	Host body size and the diversity of tick assemblages on Neotropical vertebrates. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 295-304.	1.5	45
96	Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 2021, 109, 2871-2884.	4.0	45
97	Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 2007, 23, 115-118.	1.1	42
98	Patterns and Determinants of Floristic Variation across Lowland Forests of Bolivia. Biotropica, 2011, 43, 405-413.	1.6	41
99	Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. Forest Ecology and Management, 2010, 260, 2160-2169.	3.2	40
100	The relative importance of above- versus belowground competition for tree growth during early succession of a tropical moist forest. Plant Ecology, 2012, 213, 25-34.	1.6	39
101	Frankincense in peril. Nature Sustainability, 2019, 2, 602-610.	23.7	39
102	Drivers of farmer-managed natural regeneration in the Sahel. Lessons for restoration. Scientific Reports, 2020, 10, 15038.	3.3	38
103	Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. Journal of Tropical Ecology, 2008, 24, 517-524.	1.1	37
104	Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. Ecosystems, 2017, 20, 340-353.	3.4	37
105	Community and ecosystem ramifications of increasing lianas in neotropical forests. Plant Signaling and Behavior, 2011, 6, 598-600.	2.4	36
106	Light fluctuations, crown traits, and response delays for tree saplings in a Costa Rican lowland rain forest. Journal of Tropical Ecology, 1999, 15, 83-95.	1.1	35
107	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	9.5	35
108	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34

#	Article	IF	CITATIONS
109	Landâ€use intensification effects on functional properties in tropical plant communities. Ecological Applications, 2016, 26, 174-189.	3.8	33
110	Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. Forest Ecosystems, 2020, 7, .	3.1	33
111	Demographic drivers of functional composition dynamics. Ecology, 2017, 98, 2743-2750.	3.2	30
112	Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. Journal of Ecology, 2008, 96, 495-504.	4.0	29
113	Effects of resin tapping and tree size on the purity, germination and storage behavior of Boswellia papyrifera (Del.) Hochst. seeds from Metema District, northwestern Ethiopia. Forest Ecology and Management, 2012, 269, 31-36.	3.2	29
114	Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Annals of Botany, 2013, 111, 61-68.	2.9	29
115	Frankincense production is determined by tree size and tapping frequency and intensity. Forest Ecology and Management, 2012, 274, 136-142.	3.2	28
116	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
117	Climate and soil drive forest structure in Bolivian lowland forests. Journal of Tropical Ecology, 2011, 27, 333-345.	1.1	25
118	Hyper-temporal SPOT-NDVI dataset parameterization captures species distributions. International Journal of Geographical Information Science, 2016, 30, 89-107.	4.8	25
119	Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiology, 2019, 39, 1713-1724.	3.1	25
120	Frankincense tapping reduces the carbohydrate storage of Boswellia trees. Tree Physiology, 2013, 33, 601-608.	3.1	24
121	Amazonian Dark Earth Shapes the Understory Plant Community in a Bolivian Forest. Biotropica, 2015, 47, 152-161.	1.6	24
122	Lianas have more acquisitive traits than trees in a dry but not in a wet forest. Journal of Ecology, 2021, 109, 2367-2384.	4.0	22
123	How do Light and Water Acquisition Strategies Affect Species Selection during Secondary Succession in Moist Tropical Forests?. Forests, 2015, 6, 2047-2065.	2.1	21
124	Response to Comment on "Persistent effects of pre-Columbian plant domestication on Amazonian forest composition― Science, 2017, 358, .	12.6	21
125	Liana species decline in Congo basin contrasts with global patterns. Ecology, 2020, 101, e03004.	3.2	21
126	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	5.2	21

#	Article	IF	Citations
127	Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees. Forest Ecology and Management, 2012, 278, 1-8.	3.2	20
128	Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 71-80.	2.8	20
129	Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiology, 2016, 36, 736-747.	3.1	20
130	Temperate forest development during secondary succession: effects of soil, dominant species and management. European Journal of Forest Research, 2014, 133, 511-523.	2.5	18
131	The frankincense tree Boswellia neglecta reveals high potential for restoration of woodlands in the Horn of Africa. Forest Ecology and Management, 2017, 385, 16-24.	3.2	18
132	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	5.8	18
133	Composition of Woody Species in a Dynamicforest–woodland–savannah Mosaic in Uganda: Implications for Conservation and Management. Biodiversity and Conservation, 2006, 15, 1467-1495.	2.6	17
134	Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands. Tree Physiology, 2011, 31, 740-750.	3.1	17
135	Arbuscular mycorrhizal impacts on competitive interactions between Acacia etbaica and Boswellia papyrifera seedlings under drought stress. Journal of Plant Ecology, 2014, 7, 298-308.	2.3	17
136	Chemical differentiation of Bolivian Cedrela species as a tool to trace illegal timber trade. Forestry, 2018, 91, 603-613.	2.3	17
137	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
138	Biosocial and bionumerical diversity of variously sized home gardens in Tabasco, Mexico. Agroforestry Systems, 2013, 87, 93-107.	2.0	16
139	15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Frontiers in Plant Science, 2015, 6, 229.	3.6	16
140	Forest conservation: Humans' handprints. Science, 2017, 355, 466-467.	12.6	16
141	Using tree-ring data to improve timber-yield projections for African wet tropical forest tree species. Forest Ecology and Management, 2017, 400, 396-407.	3.2	16
142	Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies. Plant Ecology and Diversity, 2015, 8, 387-399.	2.4	15
143	Pre-Columbian soil fertilization and current management maintain food resource availability in old-growth Amazonian forests. Plant and Soil, 2020, 450, 29-48.	3.7	15
144	Differential ecological filtering across life cycle stages drive old-field succession in a neotropical dry forest. Forest Ecology and Management, 2021, 482, 118810.	3.2	15

#	Article	IF	Citations
145	Lianas explore the forest canopy more effectively than trees under drier conditions. Functional Ecology, 2021, 35, 318-329.	3.6	15
146	Dry Forests of Ethiopia and Their Silviculture. Tropical Forestry, 2011, , 261-272.	1.0	15
147	Development of a population of Boswellia elongata Balf. F. in Homhil nature sanctuary, Socotra island (Yemen). Rendiconti Lincei, 2020, 31, 747-759.	2.2	12
148	How do lianas and trees change their vascular strategy in seasonal versus rain forest?. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125465.	2.7	11
149	Different biomechanical design and ecophysiological strategies in juveniles of two liana species with contrasting growth habit. American Journal of Botany, 2014, 101, 925-934.	1.7	10
150	Structure and composition of the liana assemblage of a mixed rain forest in the Congo Basin. Plant Ecology and Evolution, 2015, 148, 29-42.	0.7	10
151	Frankincense yield is related to tree size and resin-canal characteristics. Forest Ecology and Management, 2015, 353, 41-48.	3.2	10
152	Trends in tropical tree growth: reâ€analyses confirm earlier findings. Global Change Biology, 2017, 23, 1761-1762.	9.5	10
153	The montane multifunctional landscape: How stakeholders in a biosphere reserve derive benefits and address trade-offs in ecosystem service supply. Ecosystem Services, 2020, 44, 101134.	5.4	10
154	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
155	Limited Edge Effects Along a Burned-Unburned Bornean Forest Boundary Seven Years after Disturbance. Biotropica, 2011, 43, 288-298.	1.6	9
156	Towards smarter harvesting from natural palm populations by sparing the individuals that contribute most to population growth or productivity. Journal of Applied Ecology, 2018, 55, 1682-1691.	4.0	9
157	Demographic differentiation among pioneer tree species during secondary succession of a Neotropical rainforest. Journal of Ecology, 2021, 109, 3572-3586.	4.0	9
158	Effects of Amazonian Dark Earths on growth and leaf nutrient balance of tropical tree seedlings. Plant and Soil, 2015, 396, 241-255.	3.7	8
159	Uniquely regenerating frankincense tree populations in western Ethiopia. Forest Ecology and Management, 2017, 389, 127-135.	3.2	8
160	Conifer and broadleaved trees differ in branch allometry but maintain similar functional balances. Tree Physiology, 2020, 40, 511-519.	3.1	8
161	Landscapes on the Move: Land-Use Change History in a Mexican Agroforest Frontier. Land, 2021, 10, 1066.	2.9	8
162	Genetic differences among Cedrela odorata sites in Bolivia provide limited potential for fine-scale timber tracing. Tree Genetics and Genomes, 2019, 15, 1.	1.6	7

#	Article	lF	Citations
163	Tapping into nature's benefits: values, effort and the struggle to co-produce pine resin. Ecosystems and People, 2021, 17, 69-86.	3.2	7
164	Autogenic regulation and resilience in tropical dry forest. Journal of Ecology, 2021, 109, 3295-3307.	4.0	7
165	Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios. Agricultural Systems, 2022, 196, 103329.	6.1	7
166	A proposal for a transnational forest network area for elephants in \tilde{CA} te d'Ivoire and Ghana. Oryx, 2002, 36, 249-256.	1.0	6
167	Does phenology distinguish bitter and sweet African bush mango trees (Irvingia spp., Irvingiaceae)?. Trees - Structure and Function, 2014, 28, 1777-1791.	1.9	6
168	Social ecological dynamics of tropical secondary forests. Forest Ecology and Management, 2021, 496, 119369.	3.2	6
169	Postdispersal seed predation and seed viability in forest soils: implications for the regeneration of tree species in Ethiopian church forests. African Journal of Ecology, 2010, 48, 461-471.	0.9	5
170	LEAF TRAITS ARE GOOD PREDICTORS OF PLANT PERFORMANCE ACROSS 53 RAIN FOREST SPECIES. , 2006, 87, 1733.		5
171	Vegetative phenologies of lianas and trees in two Neotropical forests with contrasting rainfall regimes. New Phytologist, 2022, 235, 457-471.	7.3	5
172	Driving factors of forest growth: a reply to Ferry <i>etÂal.</i> (2012). Journal of Ecology, 2012, 100, 1069-1073.	4.0	3
173	Explaining long-term inter-individual growth variation in plant populations: persistence of abiotic factors matters. Oecologia, 2017, 185, 663-674.	2.0	3
174	Heritability of growth and leaf loss compensation in a long-lived tropical understorey palm. PLoS ONE, 2019, 14, e0209631.	2.5	3
175	Mexican agricultural frontier communities differ in forest dynamics with consequences for conservation and restoration. Remote Sensing in Ecology and Conservation, 2022, 8, 564-577.	4.3	3
176	Whole-Plant Seedling Functional Traits Suggest Lianas Also Support "Fast-Slow―Plant Economics Spectrum. Forests, 2022, 13, 990.	2.1	2
177	Land-use intensification effects on functional properties in tropical plant communities. , 2015, , 150521083605001.		0
178	Response to "Withering the coloniality of the forest transition?― Ambio, 2021, 50, 1765-1766.	5.5	0
179	Connecting Indigenous and Scientific Ecological Knowledge in the Madidi National Park, Bolivia. , 2020, 3, .		0