Zhichao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combustion and NOx emission characteristics of a retrofitted down-fired 660MWe utility boiler at different loads. Applied Energy, 2011, 88, 2400-2406.	5.1	301
2	Improved NO _{<i>x</i>} Emissions and Combustion Characteristics for a Retrofitted Down-fired 300-MW _e Utility Boiler. Environmental Science & Technology, 2010, 44, 3926-3931.	4.6	87
3	Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology, 2009, 100, 948-952.	4.8	69
4	Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retrofitted down-fired 660-MWe utility boiler. Applied Energy, 2012, 95, 196-201.	5.1	63
5	Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NO x performance on a large-scale down-fired boiler with swirl burners. Applied Energy, 2018, 223, 358-368.	5.1	63
6	Combustion characteristics and NO formation of a retrofitted low-volatile coal-fired 330 MW utility boiler under various loads with deep-air-staging. Applied Thermal Engineering, 2017, 110, 223-233.	3.0	61
7	Industrial Application of an Improved Multiple Injection and Multiple Staging Combustion Technology in a 600 MW _e Supercritical Down-Fired Boiler. Environmental Science & Technology, 2016, 50, 1604-1610.	4.6	54
8	Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept. Energy, 2011, 36, 70-77.	4.5	53
9	Influence of the Secondary Air-Box Damper Opening on Airflow and Combustion Characteristics of a Down-Fired 300-MWeUtility Boiler. Energy & Fuels, 2007, 21, 668-676.	2.5	49
10	Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300MWe utility boiler. Fuel, 2010, 89, 1525-1533.	3.4	49
11	Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner. Energy, 2011, 36, 709-723.	4.5	48
12	Anthracite combustion characteristics and NO x formation of a 300 MW e down-fired boiler with swirl burners at different loads after the implementation of a new combustion system. Applied Energy, 2017, 189, 133-141.	5.1	48
13	Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler. Fuel, 2010, 89, 410-416.	3.4	47
14	Numerical simulations of flow, combustion characteristics, and NO x emission for down-fired boiler with different arch-supplied over-fire air ratios. Applied Thermal Engineering, 2015, 75, 1034-1045.	3.0	45
15	Influence of the Overfire Air Ratio on the NO _{<i>x</i>} Emission and Combustion Characteristics of a down-Fired 300-MW _e Utility Boiler. Environmental Science & Technology, 2010, 44, 6510-6516.	4.6	44
16	Experimental characterization of anthracite combustion and NO emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions. Applied Energy, 2019, 238, 1551-1562.	5.1	41
17	Gas/particle flow characteristics of a centrally fuel rich swirl coal combustion burner. Fuel, 2008, 87, 2102-2110.	3.4	40
18	Gas/particle flow characteristics of two swirl burners. Energy Conversion and Management, 2009, 50, 1180-1191.	4.4	39

#	Article	IF	CITATIONS
19	Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air. Applied Energy, 2016, 182, 29-38.	5.1	38
20	Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications. Energy, 2020, 192, 116623.	4.5	38
21	Measurement of gas species, temperatures, char burnout, and wall heat fluxes in a 200-MWe lignite-fired boiler at different loads. Applied Energy, 2010, 87, 1217-1230.	5.1	37
22	Influence of the Down-Draft Secondary Air on the Furnace Aerodynamic Characteristics of a Down-Fired Boiler. Energy & Fuels, 2009, 23, 2437-2443.	2.5	36
23	Influence of Staged-Air on Combustion Characteristics and NO _{<i>x</i>} Emissions of a 300 MWe Down-Fired Boiler with Swirl Burners ^{â€} . Energy & Fuels, 2010, 24, 38-45.	2.5	36
24	Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner. Energy, 2011, 36, 1206-1213.	4.5	36
25	Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NO x emissions in a 600ÂMWe utility boiler. Energy, 2014, 74, 775-787.	4.5	35
26	Effect of outer secondary-air vane angle on the flow and combustion characteristics and NO formation of the swirl burner in a 300-MW low-volatile coal-fired boiler with deep air staging. Journal of the Energy Institute, 2017, 90, 239-256.	2.7	35
27	Effects of flotation and acid treatment on unburned carbon recovery from atmospheric circulating fluidized bed coal gasification fine ash and application evaluation of residual carbon. Waste Management, 2021, 136, 283-294.	3.7	35
28	Industrial-scale investigations of anthracite combustion characteristics and NO emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners. Applied Energy, 2017, 202, 169-177.	5.1	34
29	Combustion Characteristics and NO _{<i>x</i>} Emissions of Two Kinds of Swirl Burners in a 300-MW _e Wall-Fired Pulverized-Coal Utility Boiler. Combustion Science and Technology, 2008, 180, 1370-1394.	1.2	32
30	Study on pore and chemical structure characteristics of atmospheric circulating fluidized bed coal gasification fly ash. Journal of Cleaner Production, 2021, 308, 127395.	4.6	32
31	The influence of fuel bias in the primary air duct on the gas/particle flow characteristics near the swirl burner region. Fuel Processing Technology, 2008, 89, 958-965.	3.7	31
32	Experimental Investigations into Gas/Particle Flows in a Down-Fired Boiler: Influence of the Vent Air Ratio. Energy & Fuels, 2010, 24, 1592-1602.	2.5	29
33	Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region. Energy, 2011, 36, 258-267.	4.5	29
34	Influence of Different Outer Secondary Air Vane Angles on Flow and Combustion Characteristics and NO _{<i>x</i>} Emissions of a New Swirl Coal Burner. Energy & Fuels, 2010, 24, 346-354.	2.5	28
35	Numerical simulation of the combustion characteristics and NO emission of a swirl burner: Influence of the burner outlet. Applied Thermal Engineering, 2016, 104, 565-576.	3.0	27
36	Combustion stability, burnout and NO emissions of the 300-MW down-fired boiler with bituminous coal: Load variation and low-load comparison with anthracite. Fuel, 2021, 295, 120641.	3.4	27

#	Article	IF	CITATIONS
37	Influence of coal-feed rates on bituminous coal ignition in a full-scale tiny-oil ignition burner. Fuel, 2010, 89, 1690-1694.	3.4	26
38	Influence of primary air cone length on combustion characteristics and NO emissions of a swirl burner from a 0.5†MW pulverized coal-fired furnace with air staging. Applied Energy, 2018, 211, 1179-1189.	5.1	26
39	Factors affecting the downward flame depth in a 600ÂMW down-fired boiler incorporating multiple-injection and multiple-staging technology. Energy, 2017, 118, 333-344.	4.5	24
40	Bituminous coal combustion in a full-scale start-up ignition burner: Influence of the excess air ratio. Energy, 2010, 35, 4102-4106.	4.5	22
41	Effects of secondary air distribution in primary combustion zone on combustion and NO emissions of a large-scale down-fired boiler with air staging. Energy, 2018, 165, 399-410.	4.5	22
42	Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner. Energy, 2018, 165, 432-441.	4.5	22
43	Sustainable utilization method of using coal gasification fine ash to prepare activated carbon for supercapacitor. Journal of Cleaner Production, 2022, 363, 132524.	4.6	22
44	Effect of the Air Temperature on Combustion Characteristics and NO _{<i>x</i>} Emissions from a 0.5 MW Pulverized Coal-Fired Furnace with Deep Air Staging. Energy & Fuels, 2012, 26, 2068-2074.	2.5	21
45	Kinetics, thermodynamics and gas evolution of atmospheric circulating fluidized bed coal gasification fly ash combustion in air atmosphere. Fuel, 2021, 290, 119810.	3.4	21
46	Numerical Simulation of Flow, Combustion, and NO _{<i>x</i>} Emission Characteristics in a 300 MW Down-Fired Boiler with Different OFA Ratios. Numerical Heat Transfer; Part A: Applications, 2012, 62, 231-249.	1.2	20
47	Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios. Energy, 2014, 73, 844-855.	4.5	19
48	Effect of outer secondary air vane angles on combustion characteristics and NO emissions for centrally fuel rich swirl burner in a 600-MWe wall-fired pulverized-coal utility boiler. Applied Thermal Engineering, 2017, 125, 951-962.	3.0	19
49	Reducing the unburned combustible in the fly ash from a 45,000â€ ⁻ Nm3/h Ende Pulverized-Coal Gasifier by applying steam-solid ejector. Applied Thermal Engineering, 2019, 149, 34-40.	3.0	19
50	Investigation on co-combustion of coal gasification fine ash and raw coal blends: Thermal conversion, gas pollutant emission and kinetic analyses. Energy, 2022, 246, 123368.	4.5	19
51	Effects of particle concentration variation in the primary air duct on combustion characteristics and NO x emissions in a 0.5-MW test facility with pulverized coal swirl burners. Applied Thermal Engineering, 2014, 73, 859-868.	3.0	18
52	Thermal decomposition mechanisms of coal and coal chars under CO 2 atmosphere using a distributed activation energy model. Thermochimica Acta, 2018, 662, 41-46.	1.2	18
53	Effect of the Fuel Bias Distribution in the Primary Air Nozzle on the Slagging near a Swirl Coal Burner Throat. Energy & Fuels, 2009, 23, 4893-4899.	2.5	17
54	Industrial measurement of combustion and NOx formation characteristics on a low-grade coal-fired 600MWe FW down-fired boiler retrofitted with novel low-load stable combustion technology. Fuel, 2022, 321, 123926.	3.4	17

#	Article	IF	CITATIONS
55	Influence of staged-air flow on flow characteristics in a scale model of a down-fired utility boiler with swirl burners: An experimental study. Fuel, 2012, 93, 160-166.	3.4	16
56	Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NO emissions of a down-fired utility boiler. Energy, 2013, 59, 377-386.	4.5	16
57	Measurement of Gas Species, Temperatures, Coal Burnout, and Wall Heat Fluxes in a 200 MWeLignite-Fired Boiler with Different Overfire Air Damper Openings. Energy & Fuels, 2009, 23, 3573-3585.	2.5	15
58	Experimental investigation of gas/particle two-phase flow characteristics in a down-fired boiler by PDA measurements. Experimental Thermal and Fluid Science, 2019, 107, 38-53.	1.5	15
59	Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner. Chemical Engineering Science, 2011, 66, 2864-2871.	1.9	14
60	Effects of tertiary air damper opening on flow, combustion and hopper near-wall temperature of a 600 MWe down-fired boiler with improved multiple-injection multiple-staging technology. Journal of the Energy Institute, 2018, 91, 573-583.	2.7	14
61	Numerical Simulation of Low NO _{<i>x</i>} Combustion Technology in a 100 MW _e Bituminous Coal-Fired Wall Boiler. Numerical Heat Transfer; Part A: Applications, 2009, 55, 574-593.	1.2	13
62	Effects of the outer secondary air cone length on the combustion characteristics and NO x emissions of the swirl burner in a 0.5ÂMW pilot-scale facility during air-staged combustion. Applied Thermal Engineering, 2015, 86, 318-325.	3.0	13
63	Aerodynamic characteristics of a 350-MWe supercritical utility boiler with multi-injection and multi-staging: Effects of the inner and outer secondary air distribution in the burner. Journal of the Energy Institute, 2018, 91, 65-74.	2.7	13
64	Experimental Investigations into Gas/Particle Flows in a Down-Fired Boiler: Influence of Down-Draft Secondary Air. Energy & Fuels, 2009, 23, 5846-5854.	2.5	12
65	Fractal and turbulence characteristics of aerodynamic fields of swirl burners. Chemical Engineering Science, 2010, 65, 1253-1260.	1.9	12
66	Promotion of Anthracite Burnout for a 300 MW _e Down-Fired Boiler with a Novel Combustion Technology. Energy & Fuels, 2018, 32, 11924-11935.	2.5	12
67	PDA research on the air/particle flow characteristics in a 2000†t/d GSP pulverized coal gasifier at different swirl vane angles. Fuel Processing Technology, 2018, 173, 216-228.	3.7	12
68	Industrial Experiments on Anthracite Combustion and NO _{<i>x</i>} Emissions with Respect to Swirling Secondary Air for a 300 MW _e Deep-Air-Staged Down-Fired Utility Boiler. Energy & Fuels, 2018, 32, 7878-7887.	2.5	12
69	Effects of the fuel-lean coal/air flow damper opening on combustion, energy conversion and emissions in a supercritical down-fired boiler. Fuel, 2021, 292, 120319.	3.4	12
70	Analysis of comprehensive utilization of waste tire pyrolysis char by combustion method. Fuel, 2022, 312, 122996.	3.4	12
71	Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash. Energy, 2022, 251, 123930.	4.5	12
72	Influence of the mass ratio of pulverized-coal in fuel-rich flow to that in fuel-lean flow on the gas/particle flow and particle distribution characteristics in a 600 MWe down-fired boiler. Experimental Thermal and Fluid Science, 2018, 91, 363-373.	1.5	11

#	Article	IF	CITATIONS
73	Detailed gas/particle flow characteristics of an improved down-fired boiler with respect to a critical factor affecting coal burnout: Vent-air inclination angle. Energy, 2019, 182, 570-584.	4.5	11
74	Effects of the air-staging degree on performances of a supercritical down-fired boiler at low loads: Air/particle flow, combustion, water wall temperature, energy conversion and NO emissions. Fuel, 2022, 308, 121896.	3.4	11
75	Study on flow fields of centrally fuel rich swirl burner and its applications. Korean Journal of Chemical Engineering, 2009, 26, 1186-1193.	1.2	10
76	Influence of oilâ€atomized air on flow and combustion characteristics in a 300 MW _e downâ€fired boiler. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 488-496.	0.8	10
77	Study of the influence of vane angle on flow, gas species, temperature, and char burnout in a 200MWe lignite-fired boiler. Fuel, 2010, 89, 1973-1984.	3.4	10
78	New over-fire air arrangement and its air ratio optimization determined by aerodynamic characteristics in a cold small-scale model for a down-fired 660-MWe utility boiler. Experimental Thermal and Fluid Science, 2013, 44, 475-482.	1.5	10
79	Effect of secondary air mass flow rate on the airflow and combustion characteristics and NO <i>_x</i> formation of the lowâ€volatile coalâ€fired swirl burner. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 858-875.	0.8	10
80	Influence of reference temperature on the thermal stress of slag-layer cooling in an atmospheric entrained-flow gasifier with high-speed circulating gasification agent. Applied Thermal Engineering, 2018, 131, 446-454.	3.0	10
81	The application of fly ash gasification for purifying the raw syngas in an industrial-scale entrained flow gasifier. Energy, 2020, 195, 117069.	4.5	10
82	Influence of the Outer Secondary Air Vane Angle on the Flow Field of a Down-Fired Pulverized-Coal 300 MWe Utility Boiler with Swirl Burners. Energy & Fuels, 2010, 24, 3884-3889.	2.5	9
83	Aerodynamic characteristics within a cold small-scale model for a down-fired 350ÂMWe supercritical utility boiler at various primary air to vent air ratios. Energy, 2012, 47, 294-301.	4.5	8
84	Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler. Energy, 2014, 70, 95-109.	4.5	8
85	Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements. Energy, 2021, 215, 119160.	4.5	8
86	Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized coal boiler. Frontiers in Energy, 2021, 15, 68-77.	1.2	8
87	Impact of radial air staging on gas-particle flow characteristics in an industrial pulverized coal boiler. Energy, 2022, 243, 123123.	4.5	8
88	Effect of secondary air mass flow rate ratio on the slagging characteristics of the pre-combustion chamber in industrial pulverized coal-fired boiler. Energy, 2022, 251, 123860.	4.5	8
89	Combustion and NO formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion. Energy, 2022, 258, 124832.	4.5	8
90	Effects of the innerâ€secondaryâ€air damper opening on flow and combustion in a 600â€MW _e downâ€fired boiler incorporating multipleâ€injection and multipleâ€staging. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 475-488.	0.8	7

#	Article	IF	CITATIONS
91	An innovative combustion technology for a down-fired boiler with swirl burners: Gas/solid flow characteristics with various burner injection angles. Journal of Cleaner Production, 2019, 228, 1296-1310.	4.6	7
92	Thermal-calculation method for entrained-flow coal gasifiers. Energy, 2019, 166, 373-379.	4.5	7
93	Concentrator performance within a centrally fuel-rich primary air burner: Influence of multiple levels. Energy, 2011, 36, 4041-4047.	4.5	6
94	The influence of distance between adjacent rings on the gas/particle flow characteristics of a conical rings concentrator. Energy, 2011, 36, 2557-2564.	4.5	6
95	Effect of inner secondary air cone length of a centrally fuelâ€rich swirl burner on combustion characteristics and NO <i>_x</i> emissions in a 0.5 MW pulverized coalâ€fired furnace with airâ€staging. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 411-421.	0.8	6
96	Experiment and numerical simulation investigations of the combustion and NOx emissions characteristics of an over-fire air system in a 600 MWe boiler. Numerical Heat Transfer; Part A: Applications, 2017, 71, 944-961.	1.2	6
97	Influence of inner and outer secondary air ratio on flow and combustion characteristics of a swirl burner in a 29ÂMW pulverized coal boiler. Energy, 2021, 237, 121625.	4.5	6
98	Effects of the gas/particle flow and combustion characteristics on water-wall temperature and energy conversion in a supercritical down-fired boiler at different secondary-air distributions. Energy, 2022, 238, 121983.	4.5	6
99	Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio. Energy, 2022, 239, 122423.	4.5	6
100	Structure and reactivity of residual carbon from circulating fluidized bed coal gasification fine ash. Journal of Environmental Chemical Engineering, 2022, 10, 107759.	3.3	6
101	Experiment Investigations on the Performance of a Centrally Fuel Rich Swirl Coal Combustion Burner: Influence of Primary Air Ratio. International Journal of Chemical Reactor Engineering, 2008, 6,	0.6	5
102	Experimental Investigations into Gas/Particle Flows in a Down-Fired Boiler: Influence of Secondary Air Momentum. Energy & Fuels, 2010, 24, 3498-3509.	2.5	5
103	Numerical simulation study on the influences of the secondary-tertiary air proportion on the airflow mixing effects and pulverized coal combustion characteristics in a 300-MW down-fired boiler. Chemical Engineering Research and Design, 2019, 130, 326-343.	2.7	5
104	Industrial-scale Investigations on Combustion Characteristics and NOx Emissions of a 300-MWe Down-fired Boiler: Bituminous Coal Combustion and Coal Varieties Comparison. Combustion Science and Technology, 0, , 1-20.	1.2	5
105	Numerical simulation of bituminous coal combustion in a fullscale tiny-oil ignition burner: Influence of excess air ratio. Frontiers in Energy, 2012, 6, 296-303.	1.2	4
106	Numerical investigation on the influence of nozzle–organization–mode of split burner on flow field distribution and combustion characteristics of a 300â€MWe subcritical downâ€fired boiler. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2365.	0.8	4
107	Numerical Research on the Influence of Declination Angle on Carrying Capacity of Tertiary Air, Ignition, and Combustion Characteristics of Pulverized Coal of 300ÂMW Down-Fired Utility Boiler with Multi-Injection and Multi-Staging Combustion Technology. Journal of Energy Engineering - ASCE, 2019, 145.	1.0	4
108	Numerical simulation investigations into the influence of the mass ratio of pulverized-coal in fuel-rich flow to that in fuel-lean flow on the combustion and NOx generation characteristics of a 600-MW down-fired boiler. Environmental Science and Pollution Research, 2020, 27, 16900-16915.	2.7	4

#	Article	IF	CITATIONS
109	Industrial-scale investigations on effects of tertiary-air declination angle on combustion and steam temperature characteristics in a 350-MW supercritical down-fired boiler. Frontiers in Energy, 2021, 15, 132-142.	1.2	4
110	Effects of OFA Ratio on Coal Combustion and NOx Generation of a 600-MW Downfired Boiler after Changing Air Distribution around Fuel-Rich Flow. Journal of Energy Engineering - ASCE, 2019, 145, 04018073.	1.0	3
111	Study on the Physical, Chemical and Combustion Characteristics of Pyrolysis Semi-coke. Combustion Science and Technology, 2023, 195, 434-455.	1.2	3
112	The application of thermal-calculation methods in the design and syngas prediction of entrained-flow coal gasifiers. Energy Conversion and Management, 2021, 245, 114627.	4.4	3
113	Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics. Energy, 2022, 248, 123662.	4.5	3
114	Influence of different oil feed rate on bituminous coal ignition in a full-scale tiny-oil ignition burner. Frontiers in Energy, 2013, 7, 406-412.	1.2	2
115	Effect of Different Nozzle Arrangements on Gas–solid Flow Characteristics of a New Air Distribution System Circulating Fluidized Bed. Combustion Science and Technology, 2021, 193, 1661-1678.	1.2	2
116	Numerical analysis of an 80,000 Nm3/h fly ash entrained-flow gasifier at various burner inclination angles. Environmental Science and Pollution Research, 2022, 29, 26726-26737.	2.7	2
117	Improving mixing and gasification characteristics in an industrial-scale entrained flow gasifier with a novel burner. Journal of Cleaner Production, 2022, 362, 132157.	4.6	2
118	The Impact of the PDA Measurement Method in Forward Scatter on The Concentration of Gas-Particle Two Phase Flow. AIP Conference Proceedings, 2007, , .	0.3	1
119	Influence of different cover ratios on Gas-particle flow characteristics of a centrally-fuel-rich primary air burner: experiment and simulation. Procedia Environmental Sciences, 2011, 11, 1513-1521.	1.3	1
120	Improving the Combustion Performance of a 660MWe Down-Fired Utility Boiler by Adopting High Efficiency Combustion Technologies. , 2011, , .		1
121	Wear Surface Studies on Ejector-nozzle in Circulating Fluidized-Bed Gasifier. Combustion Science and Technology, 2022, 194, 1168-1182.	1.2	1
122	The Effect of the Ratio of the Secondary and Tertiary Air on the Outlet Velocity Field of the New Swirling Pulverized Coal Burner. Combustion Science and Technology, 0, , 1-14.	1.2	1
123	Influence of air ratio on combustion and NO <i>_x</i> emission characteristics of pulverized coal industrial boiler. Combustion Science and Technology, 2023, 195, 2972-2984.	1.2	1
124	Numerical analysis on effect of blend ratio on co-combustion characteristics of semi-coke and bituminous coal in swirl burner. Combustion Science and Technology, 2024, 196, 504-523.	1.2	1
125	Gas-Particle Flow Characteristics of a Centrally-Fuel-Rich Primary Air Burner: Simulation and Experiment. , 2011, , .		0
126	The Influence of Air Distribution on the Single-Phase Flow Field of Central Fuel Rich Swirl Burner. , 2011, , .		0

#	Article	IF	CITATIONS
127	Influence of 90-Degree Vertical to Horizontal Elbow on Gas-Particle Flow Characteristics of a Centrally-Fuel-Rich Primary Air Burner. , 2011, , .		0
128	10.2478/s11814-009-0216-5., 2011, 26, 1186.		0
129	Experimental investigation on controlling of airflow trajectories and flow-field of down-fired boiler by adding on arch secondary air. International Journal of Chemical Reactor Engineering, 2022, .	0.6	0