Algirdas A Maknickas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429947/publications.pdf

Version: 2024-02-01

33 468
papers citations

12 h-index 21 g-index

34 all docs 34 docs citations

34 times ranked 393 citing authors

#	Article	lF	CITATIONS
1	Recognition of normal–abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients. Physiological Measurement, 2017, 38, 1671-1684.	1.2	80
2	Parallel discrete element simulation of poly-dispersed granular material. Advances in Engineering Software, 2010, 41, 52-63.	1.8	61
3	Parallel DEM Software for Simulation of Granular Media. Informatica, 2006, 17, 207-224.	1.5	39
4	Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration. Advanced Powder Technology, 2015, 26, 698-704.	2.0	37
5	Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method. Computer Physics Communications, 2006, 175, 404-415.	3.0	35
6	Experimental investigation of acoustic agglomeration of diesel engine exhaust particles using new created acoustic chamber. Powder Technology, 2020, 360, 421-429.	2.1	24
7	Discrete element simulating the hydrodynamic effects in acoustic agglomeration of micron-sized particles. Particulate Science and Technology, 2016, 34, 453-460.	1.1	23
8	Application of Neural Network for Forecasting of Exchange Rates and Forex Trading., 2012,,.		22
9	FINANCIAL MARKET PREDICTION SYSTEM WITH EVOLINO NEURAL NETWORK AND DELPHI METHOD. Journal of Business Economics and Management, 2013, 14, 403-413.	1.1	22
10	Comparative DEM-CFD study of binary interaction and acoustic agglomeration of aerosol microparticles at low frequencies. Chemical Engineering Research and Design, 2018, 136, 548-563.	2.7	18
11	Computation and visualization of discrete particle systems on gLite-based grid. Advances in Engineering Software, 2011, 42, 237-246.	1.8	17
12	Simulation of Acoustic Particle Agglomeration in Poly-dispersed Aerosols. Procedia Engineering, 2015, 102, 1218-1225.	1,2	13
13	Development of cloud services for patient-specific simulations of blood flows through aortic valves. Advances in Engineering Software, 2017, 103, 57-64.	1.8	13
14	DEM analysis of acoustic wake agglomeration for mono-sized microparticles in the presence of gravitational effects. Granular Matter, 2017, 19, 1.	1.1	11
15	FEM-Based Compression Fracture Risk Assessment in Osteoporotic Lumbar Vertebra L1. Applied Sciences (Switzerland), 2019, 9, 3013.	1.3	8
16	Prediction Capabilities of Evolino RNN Ensembles. Studies in Computational Intelligence, 2016, , 473-485.	0.7	5
17	INVESTIGATION OF TIRE FORCE TRANSMISSION ON INTERACTION WITH SLUSH. Transport Problems, 2019, 14, 13-21.	0.3	5
18	Computational analysis of aortic haemodynamics in the presence of ascending aortic aneurysm. Technology and Health Care, 2021, 30, 187-200.	0.5	5

#	Article	IF	CITATIONS
19	Adapting the discrete element method to simulation of acoustic agglomeration of aerosol particles. AIP Conference Proceedings, 2015, , .	0.3	4
20	DYNAMIC DOMAIN DECOMPOSITION APPLIED TO HOPPER DISCHARGE SIMULATION BY DISCRETE ELEMENT METHOD. Information Technology and Control, 2011, 40, .	1.1	4
21	How to solve kSAT in polynomial time. International Journal of Operational Research, 2015, 23, 257.	0.1	3
22	Modelling of silk-reinforced PDMS properties for soft tissue engineering applications. Technology and Health Care, 2018, 26, 679-688.	0.5	3
23	Nano-scale water Poiseuille flow: MD computational experiment. AIP Conference Proceedings, 2020, , .	0.3	3
24	ON EFFICIENCY OF PARALLEL SOLVERS FOR THE BLOOD FLOW THROUGH AORTIC VALVE. Mathematical Modelling and Analysis, 2017, 22, 601-616.	0.7	2
25	Modelling of the history and predictions of financial market time series using Evolino. , 2010, , .		2
26	Investigation Of Exchange Market Prediction Model Based On High-Low Daily Data. , 2014, , .		2
27	Experimental, continuum- and DEM-based velocities in a flat-bottomed bin. Powder Technology, 2021, 377, 297-307.	2.1	1
28	Impact of time zones on forecasting of exchange market based on distribution of expected values. , $2016, , .$		1
29	Investment Support System using the EVOLINO Recurrent Neural Network Ensemble. , 2015, , .		1
30	Numerical characterisation of car tyre deflections due to overload. AIP Conference Proceedings, 2022, , .	0.3	1
31	Investigation of the backflows and outlet boundary conditions for computations of the patient-specific aortic valve flows. Technology and Health Care, 2018, 26, 553-563.	0.5	0
32	Evolino Recurrent Neural Network Ensemble for Speculation in Exchange Market in Time of Anomalies. Applied Artificial Intelligence, 2020, 34, 957-980.	2.0	0
33	COMPUTATION INTELLIGENCE BASED DAILY ALGORITHMIC STRATEGIES FOR TRADING IN THE FOREIGN EXCHANGE MARKET., 2018, , .		O