Jason Chein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429730/publications.pdf

Version: 2024-02-01

257101 395343 4,684 33 24 33 h-index citations g-index papers 34 34 34 4448 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. Developmental Science, 2011, 14, F1-10.	1.3	872
2	Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 2011, 18, 46-60.	1.4	610
3	The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 2016, 17, 103-117.	1.9	547
4	The Teenage Brain. Current Directions in Psychological Science, 2013, 22, 114-120.	2.8	510
5	Around the world, adolescence is a time of heightened sensation seeking and immature selfâ€regulation. Developmental Science, 2018, 21, e12532.	1.3	232
6	Age Patterns in Risk Taking Across the World. Journal of Youth and Adolescence, 2018, 47, 1052-1072.	1.9	207
7	When Is an Adolescent an Adult? Assessing Cognitive Control in Emotional and Nonemotional Contexts. Psychological Science, 2016, 27, 549-562.	1.8	202
8	Impact of socio-emotional context, brain development, and pubertal maturation on adolescent risk-taking. Hormones and Behavior, 2013, 64, 323-332.	1.0	173
9	Adolescents Prefer More Immediate Rewards When in the Presence of their Peers. Journal of Research on Adolescence, 2011, 21, 747-753.	1.9	149
10	Peers increase adolescent risk taking even when the probabilities of negative outcomes are known Developmental Psychology, 2014, 50, 1564-1568.	1.2	138
11	Transcranial Direct Current Stimulation Enhances Verbal Working Memory Training Performance over Time and Near Transfer Outcomes. Journal of Cognitive Neuroscience, 2014, 26, 2443-2454.	1.1	119
12	Effects of anonymous peer observation on adolescents' preference for immediate rewards. Developmental Science, 2014, 17, 71-78.	1.3	109
13	Age differences in the impact of peers on adolescents' and adults' neural response to reward. Developmental Cognitive Neuroscience, 2015, 11, 75-82.	1.9	107
14	Adolescents' cognitive capacity reaches adult levels prior to their psychosocial maturity: Evidence for a "maturity gap―in a multinational, cross-sectional sample Law and Human Behavior, 2019, 43, 69-85.	0.6	84
15	The Role of the Anterior Insula in Adolescent Decision Making. Developmental Neuroscience, 2014, 36, 196-209.	1.0	81
16	Interaction of reward seeking and self-regulation in the prediction of risk taking: A cross-national test of the dual systems model Developmental Psychology, 2016, 52, 1593-1605.	1.2	76
17	Adolescent mice, unlike adults, consume more alcohol in the presence of peers than alone. Developmental Science, 2014, 17, 79-85.	1.3	69
18	At risk of being risky: The relationship between "brain age―under emotional states and risk preference. Developmental Cognitive Neuroscience, 2017, 24, 93-106.	1.9	65

#	Article	IF	CITATIONS
19	At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia, 2011, 49, 1306-1315.	0.7	54
20	Adolescents in Peer Groups Make More Prudent Decisions When a Slightly Older Adult Is Present. Psychological Science, 2016, 27, 322-330.	1.8	50
21	Connecting brain responsivity and real-world risk taking: Strengths and limitations of current methodological approaches. Developmental Cognitive Neuroscience, 2018, 33, 27-41.	1.9	44
22	Peers Increase Late Adolescents' Exploratory Behavior and Sensitivity to Positive and Negative Feedback. Journal of Research on Adolescence, 2016, 26, 696-705.	1.9	42
23	Combined effects of peer presence, social cues, and rewards on cognitive control in adolescents. Developmental Psychobiology, 2018, 60, 292-302.	0.9	39
24	Puberty Predicts Approach But Not Avoidance on the Iowa Gambling Task in a Multinational Sample. Child Development, 2017, 88, 1598-1614.	1.7	32
25	The Impact of Emotional States on Cognitive Control Circuitry and Function. Journal of Cognitive Neuroscience, 2016, 28, 446-459.	1.1	28
26	Decreased reward-related brain function prospectively predicts increased substance use Journal of Abnormal Psychology, 2021, 130, 886-898.	2.0	14
27	Joint Effects of Peer Presence and Fatigue on Risk and Reward Processing in Late Adolescence. Journal of Youth and Adolescence, 2017, 46, 1878-1890.	1.9	10
28	A cross-sectional examination of response inhibition and working memory on the Stroop task. Cognitive Development, 2018, 47, 19-31.	0.7	9
29	Amygdala subnuclei volume in bipolar spectrum disorders: Insights from diffusionâ€based subsegmentation and a highâ€risk design. Human Brain Mapping, 2020, 41, 3358-3369.	1.9	4
30	Doubts About the Role of Rehearsal in the Irrelevant Sound Effect. Experimental Psychology, 2021, 68, 229-242.	0.3	4
31	The influence of romantic partners on male risk-taking. Journal of Social and Personal Relationships, 2020, 37, 1405-1415.	1.4	2
32	Bipolar spectrum disorders are associated with increased gray matter volume in the medial orbitofrontal cortex and nucleus accumbens. JCPP Advances, 2022, 2, .	1.4	1
33	470. Distinct Corticostriatal Structural Connectivity along the Bipolar Spectrum. Biological Psychiatry, 2017, 81, S191-S192.	0.7	0