Bernhard Schmid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429516/publications.pdf

Version: 2024-02-01

2116 2203 49,016 415 99 203 citations g-index h-index papers 519 519 519 32990 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE. Ecological Monographs, 2005, 75, 3-35.	2.4	5,856
2	Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science, 2001, 294, 804-808.	6.0	3,551
3	Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 2006, 9, 1146-1156.	3.0	1,995
4	Plant Diversity and Productivity Experiments in European Grasslands. Science, 1999, 286, 1123-1127.	6.0	1,757
5	High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477, 199-202.	13.7	1,195
6	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
7	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
8	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
9	Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468, 553-556.	13.7	786
10	Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509, 218-221.	13.7	600
11	The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology, 2004, 5, 107-121.	1.2	508
12	ECOSYSTEM EFFECTS OF BIODIVERSITY MANIPULATIONS IN EUROPEAN GRASSLANDS. Ecological Monographs, 2005, 75, 37-63.	2.4	439
13	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	6.0	433
14	JANZENâ€CONNELL EFFECTS ARE WIDESPREAD AND STRONG ENOUGH TO MAINTAIN DIVERSITY IN GRASSLANDS Ecology, 2008, 89, 2399-2406.	1.5	419
15	General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 2010, 91, 2213-2220.	1.5	410
16	Local adaptation enhances performance of common plant species. Ecology Letters, 2001, 4, 536-544.	3.0	401
17	Diversity-dependent production can decrease the stability of ecosystem functioning. Nature, 2002, 416, 84-86.	13.7	389
18	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371

#	Article	IF	Citations
19	The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 115-127.	1.1	323
20	The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos, 2002, 98, 205-218.	1.2	321
21	Plant species richness and functional composition drive overyielding in a sixâ€year grassland experiment. Ecology, 2009, 90, 3290-3302.	1.5	317
22	Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 2014, 515, 108-111.	13.7	313
23	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	1.2	307
24	Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia, 2007, 151, 190-205.	0.9	282
25	Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia, 2000, 125, 271-282.	0.9	280
26	Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil, 2000, 224, 217-230.	1.8	263
27	Using Plant Functional Traits to Explain Diversity–Productivity Relationships. PLoS ONE, 2012, 7, e36760.	1.1	263
28	Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 2000, 88, 988-998.	1.9	261
29	Overyielding in experimental grassland communities - irrespective of species pool or spatial scale. Ecology Letters, 2005, 8, 419-429.	3.0	259
30	Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecology Letters, 2002, 5, 502-511.	3.0	258
31	Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14, 1001-1009.	3.0	255
32	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	3.0	251
33	Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. American Journal of Botany, 1998, 85, 1110-1121.	0.8	247
34	The Future of Complementarity: Disentangling Causes from Consequences. Trends in Ecology and Evolution, 2019, 34, 167-180.	4.2	246
35	The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 2015, 18, 597-611.	3.0	242
36	Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, 2006, 9, 111-120.	3.0	236

#	Article	IF	Citations
37	Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Global Change Biology, 2011, 17, 1975-1989.	4.2	236
38	ECOSYSTEM EFFECTS OF BIODIVERSITY: A CLASSIFICATION OF HYPOTHESES AND EXPLORATION OF EMPIRICAL RESULTS. , 1999, 9, 893-912.		234
39	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	2.2	232
40	Biodiversity effects increase linearly with biotope space. Ecology Letters, 2004, 7, 574-583.	3.0	226
41	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	2.4	222
42	Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology, 2011, 92, 1303-1313.	1.5	218
43	Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 2017, 8, 1441.	5.8	214
44	Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology, 2000, 14, 326-337.	1.7	213
45	Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 27-49.	1.1	211
46	Strong contribution of autumn phenology to changes in satelliteâ€derived growing season length estimates across Europe (1982–2011). Global Change Biology, 2014, 20, 3457-3470.	4.2	201
47	Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia, 1996, 105, 94-99.	0.9	197
48	Species evenness and productivity in experimental plant communities. Oikos, 2004, 107, 50-63.	1.2	197
49	Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4845-4852.	1.2	193
50	Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. Journal of Applied Ecology, 1999, 36, 363-373.	1.9	190
51	Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. Journal of Applied Ecology, 2005, 43, 120-127.	1.9	189
52	Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa's large carnivores. Ecology, 2012, 93, 2590-2599.	1.5	189
53	Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross-amplification in three Old World vulture species. Molecular Ecology, 2000, 9, 2193-2195.	2.0	184
54	The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 2007, 44, 813-822.	1.9	179

#	Article	IF	CITATIONS
55	Effects of ski piste preparation on alpine vegetation. Journal of Applied Ecology, 2005, 42, 306-316.	1.9	178
56	The species richness–productivity controversy. Trends in Ecology and Evolution, 2002, 17, 113-114.	4.2	174
57	Niche pre-emption increases with species richness in experimental plant communities. Journal of Ecology, 2007, 95, 65-78.	1.9	169
58	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	1.8	169
59	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	5.8	169
60	Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181240.	1.2	169
61	Longâ€term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 2014, 123, 1528-1536.	1.2	165
62	Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications, 2021, 12, 5350.	5.8	164
63	Biodiversity effects and transgressive overyielding. Journal of Plant Ecology, 2008, 1, 95-102.	1.2	160
64	A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170, 835-848.	3.5	159
65	Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 2018, 21, 763-778.	3.0	157
66	RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany, 2000, 87, 1128-1137.	0.8	156
67	Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nature Ecology and Evolution, 2018, 2, 44-49.	3.4	155
68	Reduced competitive ability in an invasive plant. Ecology Letters, 2004, 7, 346-353.	3.0	152
69	Clonal Growth in Grassland Perennials: I. Density and Pattern-Dependent Competition Between Plants with Different Growth Forms. Journal of Ecology, 1985, 73, 793.	1.9	151
70	Evolutionary Ecology of the Prezygotic Stage. Science, 2004, 303, 971-975.	6.0	151
71	Plant diversity enhances provision of ecosystem services: A new synthesis. Basic and Applied Ecology, 2010, 11, 582-593.	1.2	151
72	Environmental factors covary with plant diversity–productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 2010, 19, 233-243.	2.7	150

#	Article	IF	Citations
73	Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology, 2009, 90, 3324-3332.	1.5	149
74	Root hemiparasites and plant diversity in experimental grassland communities. Journal of Ecology, 2000, 88, 634-644.	1.9	147
75	Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecology Letters, 2011, 14, 537-545.	3.0	145
76	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
77	Positive biodiversity–productivity relationship due to increased plant density. Journal of Ecology, 2009, 97, 696-704.	1.9	141
78	Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 2000, 90, 442-456.	1.2	138
79	Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Research, 2013, 132, 593-606.	1.1	135
80	Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. Journal of Animal Ecology, 2007, 76, 1015-1025.	1.3	134
81	Growth Variation in a Naturally Established Population of Pinus Sylvestris. Ecology, 1994, 75, 660-670.	1.5	128
82	Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology, 2009, 90, 1389-1399.	1.5	126
83	Analysis of variance with unbalanced data: an update for ecology & amp; evolution. Journal of Animal Ecology, 2010, 79, 308-316.	1.3	126
84	Genetic isolation of fragmented populations is exacerbated by drift and selection. Journal of Evolutionary Biology, 2007, 20, 534-542.	0.8	123
85	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 2018, 5, 728-739.	4.6	121
86	A LONG-TERM FIELD STUDY ON BIODIVERSITY × ELEVATED CO2INTERACTIONS IN GRASSLAND. Ecological Monographs, 2001, 71, 341-356.	2.4	120
87	Does biodiversity increase spatial stability in plant community biomass?. Ecology Letters, 2008, 11, 338-347.	3.0	120
88	Contribution of epigenetic variation to adaptation in Arabidopsis. Nature Communications, 2018, 9, 4446.	5.8	118
89	Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology, 2009, 90, 1520-1530.	1.5	117
90	Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landscape and Urban Planning, 2015, 133, 67-77.	3.4	116

#	Article	IF	CITATIONS
91	Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology and Evolution, 2020, 4, 1602-1611.	3.4	114
92	Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos, 2001, 94, 515-524.	1.2	110
93	NO EVIDENCE FOR AN EVOLUTIONARY INCREASED COMPETITIVE ABILITY IN AN INVASIVE PLANT. Ecology, 2003, 84, 2816-2823.	1.5	110
94	Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLoS ONE, 2013, 8, e81246.	1.1	110
95	Effects of Genetic Diversity in Experimental Stands of Solidago Altissima – Evidence for the Potential Role of Pathogens as Selective Agents in Plant Populations. Journal of Ecology, 1994, 82, 165.	1.9	109
96	Size dependency of sexual reproduction and of clonal growth in two perennial plants. Canadian Journal of Botany, 1995, 73, 1831-1837.	1.2	109
97	Clonal Integration and Population Structure in Perennials: Effects of Severing Rhizome Connections. Ecology, 1987, 68, 2016-2022.	1.5	108
98	Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 2022, 376, 865-868.	6.0	107
99	Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos, 2010, 119, 1610-1624.	1.2	106
100	A link between plant diversity, elevated CO2 and soil nitrate. Oecologia, 2001, 127, 540-548.	0.9	105
101	ldentifying population†and communityâ€level mechanisms of diversity–stability relationships in experimental grasslands. Journal of Ecology, 2011, 99, 1460-1469.	1.9	105
102	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	1.2	102
103	Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10160-10165.	3.3	102
104	Plant foraging and dynamic competition between branches of Pinus sylvestris in contrasting light environments. Journal of Ecology, 1998, 86, 934-945.	1.9	101
105	Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos, 2004, 106, 51-60.	1.2	100
106	Biodiversity and ecosystem functioning: reconciling the results of experimental and observational studies. Functional Ecology, 2007, 21, 998-1002.	1.7	100
107	Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. ELife, 2021, 10, .	2.8	100
108	Effects of population size and pollen diversity on reproductive success and offspring size in the narrow endemic <i>Cochlearia bavarica</i> (Brassicaceae). American Journal of Botany, 2002, 89, 1250-1259.	0.8	99

#	Article	IF	CITATIONS
109	EFFECTS OF MATERNAL AND PATERNAL ENVIRONMENT AND GENOTYPE ON OFFSPRING PHENOTYPE IN <i>SOLIDAGO ALTISSIMA</i> L Evolution; International Journal of Organic Evolution, 1994, 48, 1525-1549.	1.1	97
110	Clonal integration and effects of simulated herbivory in old-field perennials. Oecologia, 1988, 75, 465-471.	0.9	95
111	Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 2010, 5, e13382.	1.1	95
112	Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology and Biochemistry, 2015, 89, 12-23.	4.2	95
113	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	1.4	95
114	The Jena Experiment: six years of data from a grassland biodiversity experiment. Ecology, 2010, 91, 930-931.	1.5	94
115	Geophagy by large mammals at natural licks in the rain forest of the Dzanga National Park, Central African Republic. Journal of Tropical Ecology, 1998, 14, 829-839.	0.5	93
116	The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.	3.4	93
117	Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia, 2006, 147, 489-500.	0.9	92
118	A comparison of the strength of biodiversity effects across multiple functions. Oecologia, 2013, 173, 223-237.	0.9	91
119	A trait-based experimental approach to understand the mechanisms underlying biodiversity–ecosystem functioning relationships. Basic and Applied Ecology, 2014, 15, 229-240.	1.2	91
120	Rapid decay of diversity-productivity relationships after invasion of experimental plant communities. Basic and Applied Ecology, 2004, 5, 5-14.	1.2	90
121	Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. Journal of Ecology, 2008, 96, 477-488.	1.9	89
122	Plant diversity maintains longâ€ŧerm ecosystem productivity under frequent drought by increasing shortâ€ŧerm variation. Ecology, 2017, 98, 2952-2961.	1.5	89
123	Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere, 2016, 7, e01619.	1.0	87
124	A Linear Model Method for Biodiversity–Ecosystem Functioning Experiments. American Naturalist, 2009, 174, 836-849.	1.0	85
125	Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 2022, 25, 555-569.	3.0	85
126	PLASTIC RELATIONSHIPS BETWEEN REPRODUCTIVE AND VEGETATIVE MASS IN <i>SOLIDAGO ALTISSIMA</i> Evolution; International Journal of Organic Evolution, 1993, 47, 61-74.	1,1	84

#	Article	IF	CITATIONS
127	Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos, 2002, 97, 337-348.	1.2	84
128	Linking individualâ€level functional traits to tree growth in a subtropical forest. Ecology, 2016, 97, 2396-2405.	1.5	84
129	A guide to analyzing biodiversity experiments. Journal of Plant Ecology, 2017, 10, 91-110.	1.2	84
130	Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology and Evolution, 2021, 5, 1594-1603.	3.4	83
131	Clonal integration in Ranunculus reptans: by-product or adaptation?. Journal of Evolutionary Biology, 2000, 13, 237-248.	0.8	82
132	Differential effects of plant diversity on functional trait variation of grass species. Annals of Botany, 2011, 107, 157-169.	1.4	80
133	Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecology Letters, 2012, 15, 732-739.	3.0	80
134	Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 2013, 94, 1878-1885.	1.5	80
135	Seed dynamics and seedling establishment in the invading perennialSolidago altissimaunder different experimental treatments. Journal of Ecology, 1999, 87, 28-41.	1.9	79
136	GROWTH RATES, SEED SIZE, AND PHYSIOLOGY: DO SMALLâ€SEEDED SPECIES REALLY GROW FASTER. Ecology, 2008, 89, 1352-1363.	1.5	79
137	Non-random species extinction and plant production: implications for ecosystem functioning. Journal of Applied Ecology, 2005, 42, 13-24.	1.9	78
138	Soil Environmental Conditions and Microbial Build-Up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands. PLoS ONE, 2013, 8, e61069.	1.1	78
139	Transgene $ ilde{A}-$ Environment Interactions in Genetically Modified Wheat. PLoS ONE, 2010, 5, e11405.	1.1	76
140	Effects of Maternal and Paternal Environment and Genotype on Offspring Phenotype in Solidago altissima L Evolution; International Journal of Organic Evolution, 1994, 48, 1525.	1.1	75
141	Predator Diversity and Abundance Provide Little Support for the Enemies Hypothesis in Forests of High Tree Diversity. PLoS ONE, 2011, 6, e22905.	1.1	74
142	Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology, 2021, 102, e03332.	1.5	74
143	Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 73-87.	1.1	73
144	Can niche plasticity promote biodiversity–productivity relationships through increased complementarity?. Ecology, 2017, 98, 1104-1116.	1.5	73

#	Article	IF	CITATIONS
145	Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia, 2007, 154, 535-549.	0.9	72
146	Biology, chance, or history? The predictable reassembly of temperate grassland communities. Ecology, 2010, 91, 408-421.	1.5	72
147	Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 2021, 7, eabk1643.	4.7	72
148	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. Evolution; International Journal of Organic Evolution, 2002, 56, 2168-2177.	1.1	71
149	Consequences of species loss for ecosystem functioning: meta-analyses of data from biodiversity experiments., 2009,, 14-29.		71
150	Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Science of the Total Environment, 2017, 607-608, 1367-1375.	3.9	70
151	Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 2017, 10, 28-35.	1.2	70
152	Complementarity among species in horizontal versus vertical rooting space. Journal of Plant Ecology, 2008, 1, 33-41.	1.2	69
153	Taxonomic, phylogenetic, and environmental tradeâ€offs between leaf productivity and persistence. Ecology, 2009, 90, 2779-2791.	1.5	69
154	The global significance of biodiversity science in China: an overview. National Science Review, 2021, 8, nwab032.	4.6	68
155	Variation in species richness of plants and diverse groups of invertebrates in three calcareous grasslands of the Swiss Jura mountains. Revue Suisse De Zoologie, 1996, 103, 801-833.	0.1	68
156	POPULATION SIZE AND THE NATURE OF GENETIC LOAD IN GENTIANELLA GERMANICA. Evolution; International Journal of Organic Evolution, 2003, 57, 2242-2251.	1.1	67
157	Community evolution increases plant productivity at low diversity. Ecology Letters, 2018, 21, 128-137.	3.0	67
158	Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland. Biological Conservation, 2010, 143, 642-649.	1.9	66
159	Plant foraging and rhizome growth patterns of Solidago altissima in response to mowing and fertilizer application. Journal of Ecology, 1998, 86, 341-354.	1.9	65
160	Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiology, 2006, 6, 68.	1.3	65
161	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1947-1955.	1.1	64
162	Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecology Letters, 2000, 3, 530-539.	3.0	64

#	Article	IF	CITATIONS
163	Clonal Growth in Grassland Perennials: III. Genetic Variation and Plasticity Between and Within Populations of Bellis Perennis and Prunella Vulgaris. Journal of Ecology, 1985, 73, 819.	1.9	63
164	The Functioning of European Grassland Ecosystems: Potential Benefits of Biodiversity to Agriculture. Outlook on Agriculture, 2001, 30, 179-185.	1.8	63
165	Comparison of the effects of artificial and natural barriers on large African carnivores: Implications for interspecific relationships and connectivity. Journal of Animal Ecology, 2013, 82, 707-715.	1.3	63
166	A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 139-149.	1.1	63
167	Title is missing!. Conservation Genetics, 2002, 3, 131-144.	0.8	62
168	Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecology Letters, 2016, 19, 648-656.	3.0	62
169	BUGS in the Analysis of Biodiversity Experiments: Species Richness and Composition Are of Similar Importance for Grassland Productivity. PLoS ONE, 2011, 6, e17434.	1.1	62
170	A field study of the effects of elevated CO 2 and plant species diversity on ecosystemâ€level gas exchange in a planted calcareous grassland. Global Change Biology, 1999, 5, 95-105.	4.2	61
171	Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. Basic and Applied Ecology, 2003, 4, 385-394.	1.2	61
172	The value of biodiversity experiments. Basic and Applied Ecology, 2004, 5, 535-542.	1.2	61
173	Density may alter diversity–productivity relationships in experimental plant communities. Basic and Applied Ecology, 2005, 6, 505-517.	1.2	61
174	Transgenic <i>Pm3b</i> wheat lines show resistance to powdery mildew in the field. Plant Biotechnology Journal, 2011, 9, 897-910.	4.1	61
175	Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. Journal of Plant Ecology, 2017, 10, 146-157.	1.2	61
176	Effect of plant species loss on aphid–parasitoid communities. Journal of Animal Ecology, 2010, 79, 709-720.	1.3	60
177	Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic and Applied Ecology, 2002, 3, 255-266.	1.2	59
178	Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities. Oecologia, 2003, 135, 234-241.	0.9	59
179	Foliar and soil $\langle i \rangle \hat{l}' \langle i \rangle \langle sup \rangle 15 \langle sup \rangle N$ values reveal increased nitrogen partitioning among species in diverse grassland communities. Plant, Cell and Environment, 2011, 34, 895-908.	2.8	59
180	Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodiversity and Conservation, 2013, 22, 2937-2956.	1.2	59

#	Article	IF	CITATIONS
181	Plasticity in Plant Size and Architecture in Rhizome-Derived vs. Seed-Derived Solidago and Aster. Ecology, 1990, 71, 523-535.	1.5	58
182	The influence of management regime and altitude on the population structure of Succisa pratensis: implications for vegetation monitoring. Journal of Applied Ecology, 2001, 38, 689-698.	1.9	58
183	Plasticity of functional traits of forb species in response to biodiversity. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 66-77.	1.1	58
184	Experimental demography of the oldâ€field perennial Solidago altissima : the dynamics of the shoot population. Journal of Ecology, 1999, 87, 17-27.	1.9	57
185	Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 2010, 123, 551-561.	1.2	57
186	COSTS OF PLASTICITY IN FORAGING CHARACTERISTICS OF THE CLONAL PLANT RANUNCULUS REPTANS. Evolution; International Journal of Organic Evolution, 2000, 54, 1947.	1.1	56
187	Demographic stochasticity in population fragments of the declining distylous perennial Primula veris (Primulaceae). Basic and Applied Ecology, 2003, 4, 197-206.	1.2	56
188	Plastic Relationships between Reproductive and Vegetative Mass in Solidago altissima. Evolution; International Journal of Organic Evolution, 1993, 47, 61.	1.1	54
189	Legume species differ in the responses of their functional traits to plant diversity. Oecologia, 2011, 165, 437-452.	0.9	54
190	Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences, 2014, 11, 2003-2016.	1.3	54
191	Effects of habitat fragmentation on population structure and fitness components of the wetland specialist Swertia perennis L. (Gentianaceae). Basic and Applied Ecology, 2002, 3, 101-114.	1.2	53
192	Loss of habitat specialists despite conservation management in fen remnants 1995–2006. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 65-79.	1.1	53
193	Attitudes toward forest diversity and forest ecosystem servicesâ€"a cross-cultural comparison between China and Switzerland. Journal of Plant Ecology, 2014, 7, 1-9.	1.2	53
194	Apomixis Allows the Transgenerational Fixation of Phenotypes in Hybrid Plants. Current Biology, 2016, 26, 331-337.	1.8	53
195	Life Histories in Clonal Plants of the Carex Flava Group. Journal of Ecology, 1984, 72, 93.	1.9	52
196	Interaction between the endophytic fungus Epichloe bromicola and the grass Bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering. Molecular Ecology, 1999, 8, 1827-1835.	2.0	52
197	Maternal and direct effects of elevated CO 2 on seed provisioning, germination and seedling growth in Bromus erectus. Oecologia, 2000, 123, 475-480.	0.9	52
198	Effects of habitat fragmentation on choke disease (Epichloë bromicola) in the grass Bromus erectus. Journal of Ecology, 2001, 89, 247-255.	1.9	52

#	Article	IF	CITATIONS
199	Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity, 2003, 91, 9-16.	1.2	52
200	Field surveys of capercaillie (Tetrao urogallus) in the Swiss Alps underestimated local abundance of the species as revealed by genetic analyses of non-invasive samples. Conservation Genetics, 2010, 11, 33-44.	0.8	51
201	Experimental invasion by legumes reveals non-random assembly rules in grassland communities. Journal of Ecology, 2005, 93, 1062-1070.	1.9	50
202	Environmental heterogeneity increases complementarity in experimental grassland communities. Basic and Applied Ecology, 2008, 9, 467-474.	1,2	50
203	Seed Production Affects Maternal Growth and Senescence in Arabidopsis. Plant Physiology, 2016, 171, 392-404.	2.3	49
204	Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 2017, 10, 158-169.	1.2	49
205	Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2023, 21, 94-103.	1.9	49
206	Clonal Growth in Grassland Perennials: II. Growth Form and Fine-Scale Colonizing Ability. Journal of Ecology, 1985, 73, 809.	1.9	48
207	Growth Responses of Rhizomatous Plants to Fertilizer Application and Interference. Oikos, 1992, 65, 13.	1.2	48
208	Plant diversity and generation of ecosystem services at the landscape scale: expert knowledge assessment. Journal of Applied Ecology, 2012, 49, 929-940.	1.9	48
209	Functional trait dissimilarity drives both species complementarity and competitive disparity. Functional Ecology, 2017, 31, 2320-2329.	1.7	48
210	Crown Construction, Leaf Dynamics, and Carbon Gain in Two Perennials with Contrasting Architecture. Ecological Monographs, 1994, 64, 177-203.	2.4	47
211	Experimental demography of rhizome populations of establishing clones of Solidago altissima. Journal of Ecology, 1999, 87, 42-54.	1.9	47
212	Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System. PLoS ONE, 2007, 2, e846.	1.1	47
213	Correlations between genet architecture and some life history features in three species of Solidago. Oecologia, 1988, 75, 459-464.	0.9	46
214	Small-scale experimental habitat fragmentation reduces colonization rates in species-rich grasslands. Oecologia, 2006, 148, 144-152.	0.9	46
215	Adaptation and extinction in experimentally fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19120-19125.	3.3	46
216	Mechanisms promoting tree species coâ€existence: Experimental evidence with saplings of subtropical forest ecosystems of China. Journal of Vegetation Science, 2012, 23, 837-846.	1.1	46

#	Article	IF	CITATIONS
217	Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sensing of Environment, 2021, 252, 112170.	4.6	46
218	Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity. PLoS ONE, 2013, 8, e49618.	1.1	46
219	EXPERIMENTAL LIFE-HISTORY EVOLUTION: SELECTION ON THE ALLOCATION TO SEXUAL REPRODUCTION AND ITS PLASTICITY IN A CLONAL PLANT. Evolution; International Journal of Organic Evolution, 2002, 56, 2168.	1.1	46
220	Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecology and Evolution, 2015, 5, 3541-3556.	0.8	45
221	Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nature Ecology and Evolution, 2020, 4, 393-405.	3.4	45
222	Diversity effects in early―and midâ€successional species pools along a nitrogen gradient. Ecology, 2009, 90, 637-648.	1,5	43
223	Public participation and willingness to cooperate in common-pool resource management: A field experiment with fishing communities in Brazil. Ecological Economics, 2010, 69, 613-622.	2.9	42
224	Genomics meets remote sensing in global change studies: monitoring and predicting phenology, evolution and biodiversity. Current Opinion in Environmental Sustainability, 2017, 29, 177-186.	3.1	42
225	Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161, 108375.	4.2	42
226	Separating Drought Effects from Roof Artifacts on Ecosystem Processes in a Grassland Drought Experiment. PLoS ONE, 2013, 8, e70997.	1.1	42
227	Effects of herbivory simulated by clipping and jasmonic acid on Solidago canadensis. Basic and Applied Ecology, 2004, 5, 173-181.	1,2	41
228	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	0.8	41
229	Evidence for rapid evolution in a grassland biodiversity experiment. Molecular Ecology, 2019, 28, 4097-4117.	2.0	41
230	Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Science of the Total Environment, 2019, 665, 678-689.	3.9	41
231	Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 2020, 23, 1003-1013.	3.0	41
232	Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology, 2020, 101, e02905.	1.5	40
233	Contrasting Effects of Intraspecific Trait Variation on Trait-Based Niches and Performance of Legumes in Plant Mixtures. PLoS ONE, 2015, 10, e0119786.	1.1	40
234	Effects of simulated root herbivory and fertilizer application on growth and biomass allocation in the clonal perennialSolidago canadensis. Oecologia, 1990, 84, 9-15.	0.9	39

#	Article	IF	Citations
235	Demographic and genetic invasion history of a 9-year-old roadside population of Bunias orientalis L. (Brassicaceae). Oecologia, 1999, 120, 225-234.	0.9	39
236	Hierarchical reliability in experimental plant assemblages. Journal of Plant Ecology, 2008, 1, 59-65.	1.2	39
237	Complementarity among four highly productive grassland species depends on resource availability. Oecologia, 2016, 181, 571-582.	0.9	39
238	Shifting relative importance of climatic constraints on land surface phenology. Environmental Research Letters, 2018, 13, 024025.	2.2	39
239	Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a longâ€ŧerm biodiversity experiment. Molecular Ecology, 2019, 28, 863-878.	2.0	39
240	Effects of plant community history, soil legacy and plant diversity on soil microbial communities. Journal of Ecology, 2021, 109, 3007-3023.	1.9	39
241	Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 180-193.	0.6	38
242	Experimental plant communities develop phylogenetically overdispersed abundance distributions during assembly. Ecology, 2013, 94, 465-477.	1.5	38
243	Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 2018, 55, 1486-1497.	1.9	38
244	Experimental life-history evolution: selection on growth form and its plasticity in a clonal plant. Journal of Evolutionary Biology, 2003, 17, 331-341.	0.8	37
245	Effects of plant species richness on stand structure and productivity. Journal of Plant Ecology, 2009, 2, 95-106.	1.2	37
246	Plant interactions shape pollination networks via nonadditive effects. Ecology, 2019, 100, e02619.	1.5	37
247	Terrestrial land-cover type richness is positively linked to landscape-level functioning. Nature Communications, 2020, 11, 154.	5.8	37
248	Modeling of Discontinuous Relationships in Biology with Censored Regression. American Naturalist, 1994, 143, 494-507.	1.0	36
249	Title is missing!. Conservation Genetics, 2003, 4, 479-490.	0.8	36
250	Plant selection and soil legacy enhance longâ€term biodiversity effects. Ecology, 2016, 97, 918-928.	1.5	36
251	Modelling the Competitiveness of Clonal Plants by Complementary Analytical and Simulation Approaches. Oikos, 1999, 85, 217.	1.2	35
252	Selection for monoculture and mixture genotypes in a biodiversity experiment. Basic and Applied Ecology, 2011, 12, 360-371.	1.2	35

#	Article	IF	Citations
253	The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161451.	1.2	35
254	Tree diversity increases levels of herbivore damage in a subtropical forest canopy: evidence for dietary mixing by arthropods?. Journal of Plant Ecology, 2017, 10, 13-27.	1.2	35
255	Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 2019, 62, 1047-1057.	2.3	35
256	Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecological Indicators, 2020, 119, 106641.	2.6	35
257	Shrines in Central Italy conserve plant diversity and large trees. Ambio, 2016, 45, 468-479.	2.8	34
258	Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology, 2019, 100, e02624.	1.5	34
259	Coâ€occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology, 2021, 102, e03205.	1.5	34
260	Gene Flow in Genetically Modified Wheat. PLoS ONE, 2011, 6, e29730.	1.1	34
261	Genetic Effects of Habitat Fragmentation on Common Species of Swiss Fen Meadows. Conservation Biology, 2004, 18, 1043-1051.	2.4	33
262	Leaf area increases with species richness in young experimental stands of subtropical trees. Journal of Plant Ecology, 2017, 10, 128-135.	1.2	33
263	Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. Journal of Ecology, 2019, 107, 2697-2712.	1.9	33
264	Niche width and variation within and between populations in colonizing species (Carex flava group). Oecologia, 1984, 63, 1-5.	0.9	31
265	Predicting stochastic community dynamics in grasslands under the assumption of competitive symmetry. Journal of Theoretical Biology, 2016, 399, 53-61.	0.8	31
266	Soil microbes promote complementarity effects among coâ€existing trees through soil nitrogen partitioning. Functional Ecology, 2018, 32, 1879-1889.	1.7	31
267	The Nagoya Protocol could backfire on the Global South. Nature Ecology and Evolution, 2018, 2, 917-919.	3.4	31
268	Diversity effects in reproductive biology. Oikos, 2003, 102, 217-220.	1.2	30
269	Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity. Oikos, 2018, 127, 865-865.	1.2	30
270	Diversity increases yield but reduces harvest index in crop mixtures. Nature Plants, 2021, 7, 893-898.	4.7	30

#	Article	IF	CITATIONS
271	Effect of Connectivity Between Restoration Meadows on Invertebrates with Contrasting Dispersal Abilities. Restoration Ecology, 2011, 19, 151-159.	1.4	29
272	Mixtures of genetically modified wheat lines outperform monocultures. Ecological Applications, 2012, 22, 1817-1826.	1.8	29
273	Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. Journal of Plant Ecology, 2019, 12, 882-893.	1.2	29
274	Changes in the Abundance of Grassland Species in Monocultures versus Mixtures and Their Relation to Biodiversity Effects. PLoS ONE, 2013, 8, e75599.	1.1	29
275	Responses of Rare Calcareous Grassland Plants to Elevated CO 2 : A Field Experiment with Gentianella Germanica and Gentiana Cruciata. Journal of Ecology, 1997, 85, 681.	1.9	28
276	Net Assimilation Rate Determines the Growth Rates of 14 Species of Subtropical Forest Trees. PLoS ONE, 2016, 11, e0150644.	1.1	28
277	Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. Global Change Biology, 2022, 28, 2956-2978.	4.2	28
278	In their native range, invasive plants are held in check by negative soil-feedbacks. Ecosphere, 2011, 2, art54.	1.0	27
279	The analysis of biodiversity experiments: from pattern toward mechanism. , 2009, , 94-104.		27
280	The analysis of complex leaf survival data. Basic and Applied Ecology, 2001, 2, 223-231.	1.2	26
281	POPULATION SIZE AND IDENTITY INFLUENCE THE REACTION NORM OF THE RARE, ENDEMIC PLANT COCHLEARIA BAVARICA ACROSS A GRADIENT OF ENVIRONMENTAL STRESS. Evolution; International Journal of Organic Evolution, 2003, 57, 496-508.	1.1	25
282	What happens to the sown species if a biodiversity experiment is not weeded?. Basic and Applied Ecology, 2013, 14, 187-198.	1.2	25
283	Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecology and Evolution, 2017, 7, 8753-8760.	0.8	25
284	Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest. PLoS ONE, 2016, 11, e0167771.	1.1	25
285	A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 2019, 100, e02812.	1.5	24
286	Predicting species abundances in a grassland biodiversity experiment: Tradeâ€offs between model complexity and generality. Journal of Ecology, 2020, 108, 774-787.	1.9	23
287	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes, 0, 5, .	1.0	23
288	Predicting adaptive evolution under elevated atmospheric CO2in the perennial grass Bromus erectus. Global Change Biology, 2007, 13, 1028-1039.	4.2	22

#	Article	IF	CITATIONS
289	Leaf-litter overyielding in a forest biodiversity experiment in subtropical China. Forest Ecosystems, 2018, 5, .	1.3	22
290	Effective Long-Distance Pollen Dispersal in Centaurea jacea. PLoS ONE, 2009, 4, e6751.	1.1	22
291	Soil Communities Promote Temporal Stability and Species Asynchrony in Experimental Grassland Communities. PLoS ONE, 2016, 11, e0148015.	1.1	22
292	Feeding ecology of a large social antelope in the rainforest. Oecologia, 1999, 119, 81-90.	0.9	21
293	Different Assembly Processes Drive Shifts in Species and Functional Composition in Experimental Grasslands Varying in Sown Diversity and Community History. PLoS ONE, 2014, 9, e101928.	1.1	21
294	Selection in response to community diversity alters plant performance and functional traits. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 51-61.	1.1	21
295	A new experimental approach to test why biodiversity effects strengthen as ecosystems age. Advances in Ecological Research, 2019, , 221-264.	1.4	21
296	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	1.7	21
297	Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing. PLoS ONE, 2012, 7, e35448.	1.1	21
298	Nonâ€random recruitment of invader species in experimental grasslands. Oikos, 2009, 118, 1524-1540.	1.2	20
299	Biodiversity and belowground interactions mediate community invasion resistance against a tall herb invader. Journal of Plant Ecology, 2010, 3, 99-108.	1.2	20
300	Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China. Journal of Plant Ecology, 2017, 10, 179-189.	1.2	20
301	The assembly of a plant network in alpine vegetation. Journal of Vegetation Science, 2018, 29, 999-1006.	1.1	20
302	Reciprocal Parasitization in Rhinanthus Serotinus: A Model System of Physiological Integration in Clonal Plants. Oikos, 1997, 78, 221.	1.2	19
303	Effects of inbreeding and pollen donor provenance and diversity on offspring performance under environmental stress in the rare plant Cochlearia bavarica. Basic and Applied Ecology, 2005, 6, 325-338.	1.2	19
304	Biodiversity: Complementary canopies. Nature Ecology and Evolution, 2017, 1, 104.	3.4	19
305	Seasonal characteristics and determinants of tree growth in a Chinese subtropical forest. Journal of Plant Ecology, 2017, 10, 4-12.	1.2	19
306	Biotic stability mechanisms in Inner Mongolian grassland. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200675.	1.2	19

#	Article	IF	Citations
307	Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nature Ecology and Evolution, 2020, 4, 550-559.	3.4	19
308	Drought-exposure history increases complementarity between plant species in response to a subsequent drought. Nature Communications, 2022, 13, .	5.8	19
309	The Importance of Population Processes for the Maintenance of Biological Diversity. Gaia, 1995, 4, 199-209.	0.3	18
310	Effects of biodiversity loss and disturbance on the survival and performance of twoRanunculusspecies with differing clonal architectures. Ecography, 2001, 24, 59-67.	2.1	18
311	Consistent Effects of Biodiversity on Ecosystem Functioning Under Varying Density and Evenness. Folia Geobotanica, 2013, 48, 335-353.	0.4	18
312	Genetic diversity of two tropical tree species of the Dipterocarpaceae following logging and restoration in Borneo: high genetic diversity in plots with high species diversity. Plant Ecology and Diversity, 2016, 9, 459-469.	1.0	18
313	Plant diversity increases N removal in constructed wetlands when multiple rather than single N processes are considered. Ecological Applications, 2019, 29, e01965.	1.8	18
314	Growth–trait relationships in subtropical forest are stronger at higher diversity. Journal of Ecology, 2020, 108, 256-266.	1.9	18
315	The role of soluble sugars during drought in tropical tree seedlings with contrasting tolerances. Journal of Plant Ecology, 2020, 13, 389-397.	1.2	18
316	Modelling of three-dimensional, diurnal light extinction in two contrasting forests. Agricultural and Forest Meteorology, 2021, 296, 108230.	1.9	18
317	Genetic variation in response to elevated CO2 in three grassland perennials $\hat{a} \in \text{``a}$ a field experiment with two competition regimes. Acta Oecologica, 1997, 18, 263-268.	0.5	17
318	Profiteers of environmental change in the Swiss Alps: increase of thermophilous and generalist plants in wetland ecosystems within the last 10Ayears. Alpine Botany, 2012, 122, 45-56.	1.1	17
319	Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes. Oecologia, 2014, 174, 993-1005.	0.9	17
320	Plant responses to diversityâ€driven selection and associated rhizosphere microbial communities. Functional Ecology, 2020, 34, 707-722.	1.7	17
321	An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions. Ecology, 2021, 102, e03243.	1.5	17
322	Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. Journal of Ecology, 2021, 109, 1284-1297.	1.9	17
323	Satelliteâ€derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades. Ecology, 2021, 102, e03518.	1.5	17
324	Inbreeding Depression under Drought Stress in the Rare Endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. PLoS ONE, 2012, 7, e47415.	1.1	17

#	Article	IF	CITATIONS
325	Decomposing functional trait associations in a Chinese subtropical forest. PLoS ONE, 2017, 12, e0175727.	1.1	17
326	Growth of Transplanted and Native Shoots in Perennials with Contrasting Genet Architecture. Flora: Morphology, Distribution, Functional Ecology of Plants, 1991, 185, 335-344.	0.6	16
327	Relationships between leaf nitrogen and limitations of photosynthesis in canopies of Solidago altissima. Acta Oecologica, 1999, 20, 559-570.	0.5	16
328	Competitive Performance of Transgenic Wheat Resistant to Powdery Mildew. PLoS ONE, 2011, 6, e28091.	1.1	16
329	Estimating Plant Traits of Alpine Grasslands on the Qinghai-Tibetan Plateau Using Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 2263-2275.	2.3	16
330	Drivers of largeâ€scale geographical variation in sexual systems of woody plants. Global Ecology and Biogeography, 2020, 29, 546-557.	2.7	16
331	Plant diversity and community history shift colonization success from early- to mid-successional species. Journal of Plant Ecology, 2015, 8, 231-241.	1.2	15
332	Plant selection and soil legacy enhance long-term biodiversity effects. Ecology, 2016, 97, 918-28.	1.5	15
333	A plant diversity×water chemistry experiment in subalpine grassland. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 51-61.	1.1	14
334	Loss of plant biodiversity eliminates stimulatory effect of elevated CO2 on earthworm activity in grasslands. Oecologia, 2013, 171, 613-622.	0.9	14
335	Selection in monoculture vs. mixture alters plant metabolic fingerprints. Journal of Plant Ecology, 2015, 8, 549-557.	1.2	14
336	Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of community trait space with increasing plant diversity in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 42-50.	1.1	14
337	Functional groups differ in trait means, but not in trait plasticity to species richness in local grassland communities. Ecology, 2018, 99, 2295-2307.	1.5	14
338	Seltenheit und Gefi;½hrdung? Populationsbiologische Grundlagen des Artenschutzes. Die Naturwissenschaften, 1994, 81, 283-292.	0.6	14
339	Plant venereal disease: a model for integrating genetics, ecology and epidemiology. Trends in Ecology and Evolution, 1995, 10, 221-222.	4.2	13
340	Seasonal dynamics of biomass and nitrogen in canopies of Solidago altissima and effects of a yearly mowing treatment. Acta Oecologica, 2000, 21, 63-77.	0.5	13
341	Species vs community perspectives in biodiversity experiments. Oikos, 2003, 100, 620-621.	1.2	13
342	Microgametophyte population sizes and plant reproductive output in the insect-pollinatedPrunella grandiflora(Lamiaceae). New Phytologist, 2007, 173, 393-400.	3.5	13

#	Article	IF	Citations
343	Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists. PLoS ONE, 2012, 7, e28121.	1.1	13
344	Costs of resistance to fungal pathogens in genetically modified wheat. Journal of Plant Ecology, 2013, 6, 92-100.	1.2	13
345	Effect of clear-cutting silviculture on soil respiration in a subtropical forest of China. Journal of Plant Ecology, 2013, 6, 335-348.	1.2	13
346	Decision-Making: Are Plants More Rational than Animals?. Current Biology, 2016, 26, R675-R678.	1.8	13
347	Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment. Ecology, 2018, 99, 1214-1226.	1.5	13
348	Remotely sensed betweenâ€individual functional trait variation in a temperate forest. Ecology and Evolution, 2021, 11, 10834-10867.	0.8	13
349	Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology, 2021, 55, 74-86.	1.2	13
350	Movement Patterns and Home Range Of The Bongo (Tragelaphus Eurycerus) In The Rain Forest Of The Dzanga National Park, Central African Republic. African Journal of Ecology, 2000, 38, 53-61.	0.4	12
351	[CO2] - and density-dependent competition between grassland species. Global Change Biology, 2006, 12, 2175-2186.	4.2	12
352	Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 2020, 227, 744-756.	3.5	12
353	Seltenheit und Gefi¿½hrdung ?Populationsbiologische Grundlagen des Artenschutzes. Die Naturwissenschaften, 1994, 81, 283-292.	0.6	11
354	Title is missing!. Conservation Genetics, 2002, 3, 451-453.	0.8	11
355	Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift. Oikos, 2005, 108, 573-581.	1.2	11
356	Effects of biodiversity on ecosystem, community, and population variables reported 1974–2004. Ecology, 2009, 90, 853-853.	1.5	11
357	Observations, indicators and scenarios of biodiversity and ecosystem services change — a framework to support policy and decision-making. Current Opinion in Environmental Sustainability, 2017, 29, 198-206.	3.1	11
358	Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. Journal of Plant Ecology, 2020, 13, 478-488.	1.2	11
359	Communityâ€wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos, 2020, 129, 799-810.	1.2	11
360	Plant Species Loss Affects Life-History Traits of Aphids and Their Parasitoids. PLoS ONE, 2010, 5, e12053.	1.1	11

#	Article	IF	CITATIONS
361	Does a giant tortoise taxon substitute enhance seed germination of exotic fleshy-fruited plants?. Journal of Plant Ecology, 2013, 6, 57-63.	1.2	10
362	Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. Research Ideas and Outcomes, 0, 8, .	1.0	10
363	Reductionism, holism, and integrated approaches in biodiversity research. Interdisciplinary Science Reviews, 1995, 20, 49-60.	1.0	9
364	Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 20, 32-45.	1.1	9
365	Nematode communities, plant nutrient economy and lifeâ€cycle characteristics jointly determine plant monoculture performance over 12 years. Oikos, 2020, 129, 466-479.	1.2	9
366	Biochemical symptoms of stress in the mycorrhizal roots of Norway spruce (Picea abies). Trees - Structure and Function, 1989, 3, 65-72.	0.9	8
367	Sexual Hieracium pilosella plants are better inter-specific, while apomictic plants are better intra-specific competitors. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 43-51.	1.1	8
368	Not even wrong: Comment by Wagg etÂal Ecology, 2019, 100, e02805.	1.5	8
369	Inferring competitive outcomes, ranks and intransitivity from empirical data: A comparison of different methods. Methods in Ecology and Evolution, 2020, 11, 117-128.	2.2	8
370	Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm. PLoS ONE, 2014, 9, e96022.	1.1	8
371	Ecology of closely related plant species: An introduction. Folia Geobotanica, 1999, 34, 1-5.	0.4	7
372	Impact of Regional Species Pool on Grasshopper Restoration in Hay Meadows. Restoration Ecology, 2008, 16, 34-38.	1.4	7
373	Comparative study of the most tested hypotheses on relationships between biodiversity, productivity, light and nutrients. Basic and Applied Ecology, 2021, 53, 175-190.	1.2	7
374	Effects of tree sapling diversity and nutrient addition on herb-layer invasibility in communities of subtropical species. Open Journal of Ecology, 2012, 02, 1-11.	0.4	7
375	Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. Journal of Ecology, 2022, 110, 2167-2178.	1.9	7
376	POPULATION SIZE AND THE NATURE OF GENETIC LOAD IN GENTIANELLA GERMANICA. Evolution; International Journal of Organic Evolution, 2003, 57, 2242.	1.1	6
377	Identification of dominant features in spatial data. Spatial Statistics, 2021, 41, 100483.	0.9	6
378	Soil Fungi Promote Biodiversity–Productivity Relationships in Experimental Communities of Young Trees. Ecosystems, 2022, 25, 858-871.	1.6	6

#	Article	IF	Citations
379	Richness, not evenness, of invasive plant species promotes invasion success into native plant communities via selection effects. Oikos, 2022, 2022, .	1.2	6
380	Die funktionelle Bedeutung der Artenvielfalt: BiodiversitÄ\ Biologie in Unserer Zeit, 2003, 33, 356-365.	0.3	5
381	Complementarity effects do not necessarily result in significant transgressive over-performance in mixtures. Biological Invasions, 2015, 17, 529-535.	1.2	5
382	Surrounding species diversity improves subtropical seedlings' carbon dynamics. Ecology and Evolution, 2018, 8, 7055-7067.	0.8	5
383	Beziehung Zwischen Struktur und Dynamik von Blattpopulationen und Sprosswachstum., 1991, , 179-200.		5
384	Biochemical symptoms of stress in the mycorrhizal roots of Norway spruce (Picea abies). Trees - Structure and Function, 1989, 3, 65.	0.9	4
385	Measuring Impartial Preference for Biodiversity. Ecological Economics, 2017, 132, 45-54.	2.9	4
386	Editorial overview: Environmental change issues: Integrated global change and biodiversity research for a sustainable future. Current Opinion in Environmental Sustainability, 2017, 29, vii-xi.	3.1	4
387	Biodiversity–ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 2017, 10, 1-3.	1.2	4
388	Genetic differentiation, phenotypic plasticity and adaptation in a hybridizing pair of a more common and a less common Carex species. Alpine Botany, 2018, 128, 149-167.	1.1	4
389	The Vagueness of "Biodiversity―and Its Implications in Conservation Practice. History, Philosophy and Theory of the Life Sciences, 2019, , 353-374.	0.4	4
390	Removing subordinate species in a biodiversity experiment to mimic observational field studies., 0,,.		4
391	Plant selection and soil legacy enhance long-term biodiversity effects. Ecology, 2016, 97, 918.	1.5	3
392	Linking local species coexistence to ecosystem functioning: a conceptual framework from ecological first principles in grassland ecosystems. Advances in Ecological Research, 2019, 61, 265-296.	1.4	3
393	A graphical causal model for resolving species identity effects and biodiversity–ecosystem function correlations: comment. Ecology, 2022, 103, e03378.	1.5	3
394	Response to Comment on "Impacts of species richness on productivity in a large-scale subtropical forest experiment― Science, 2019, 363, .	6.0	3
395	Historical context modifies plant diversity–community productivity relationships in alpine grassland. Journal of Ecology, 2022, 110, 2205-2218.	1.9	3
396	Simulating the evolution of a clonal trait in plants with sexual and vegetative reproduction. Journal of Plant Ecology, 2008, 1, 161-171.	1.2	2

#	Article	IF	CITATIONS
397	Persistence of seeds, seedlings and plants, performance of transgenic wheat in weed communities in the field and effects on fallow weed diversity. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 421-433.	1.1	2
398	Despite admixing two closely related Carex species differ in their regional morphological differentiation. Plant Systematics and Evolution, 2017, 303, 901-914.	0.3	2
399	The first 10 years ofJPE. Journal of Plant Ecology, 2018, 11, 799-802.	1.2	2
400	Woody plant encroachment may decrease plant carbon storage in grasslands under future drier conditions. Journal of Plant Ecology, 2020, 13, 213-223.	1.2	2
401	New development phase of JPE. Journal of Plant Ecology, 2020, 13, 1-2.	1.2	2
402	POPULATION SIZE AND IDENTITY INFLUENCE THE REACTION NORM OF THE RARE, ENDEMIC PLANT COCHLEARIA BAVARICA ACROSS A GRADIENT OF ENVIRONMENTAL STRESS. Evolution; International Journal of Organic Evolution, 2003, 57, 496.	1.1	1
403	Rodent selectivity of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists: Insights from a receptor model. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 229-235.	1.0	1
404	Local and landscape-level diversity effects on forest functioning. PLoS ONE, 2020, 15, e0233104.	1.1	1
405	Apomixis and genetic background affect distinct traits in Hieracium pilosella L. grown under competition. BMC Biology, 2021, 19, 177.	1.7	1
406	Field study of mycorrhizal activity in spruce (Picea abies [L.] Karst). Agriculture, Ecosystems and Environment, 1990, 28, 365-370.	2.5	0
407	Epigenetic changes in ecological systems under selection. New Biotechnology, 2012, 29, S25.	2.4	O
408	Predicting adaptive evolution under elevated atmospheric CO2in the perennial grass Bromus erectus. Global Change Biology, 2007, .	4.2	0
409	Der Aufstieg der Biodiversitäzum globalen Thema. Gaia, 2019, 28, 249-249.	0.3	0
410	Genetically Constrained Temporal Trajectories of Temperate Forest Airborne Reflectance Spectra. , 2020, , .		0
411	Thirty years of <i>GAIA:</i> a constant in a fast-changing world. Gaia, 2022, 31, 4-5.	0.3	0
412	Local and landscape-level diversity effects on forest functioning. , 2020, 15, e0233104.		0
413	Local and landscape-level diversity effects on forest functioning. , 2020, 15, e0233104.		0
414	Local and landscape-level diversity effects on forest functioning. , 2020, 15, e0233104.		0

ARTICLE IF CITATIONS

415 Local and landscape-level diversity effects on forest functioning., 2020, 15, e0233104. 0