Asim Masood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 2017, 115, 126-140.	2.8	337
2	Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling and Behavior, 2013, 8, e26374.	1.2	307
3	Role of ethylene in alleviation of cadmiumâ€induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell and Environment, 2012, 35, 524-533.	2.8	265
4	Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research, 2017, 24, 2273-2285.	2.7	201
5	Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard. Frontiers in Plant Science, 2016, 7, 521.	1.7	164
6	Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 2011, 70, 80-87.	2.0	148
7	Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicology and Environmental Safety, 2014, 106, 54-61.	2.9	147
8	Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany, 2014, 107, 55-63.	2.0	127
9	Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. Journal of Experimental Botany, 2011, 62, 4955-4963.	2.4	123
10	Involvement of ethylene in reversal of saltâ€inhibited photosynthesis by sulfur in mustard. Physiologia Plantarum, 2014, 152, 331-344.	2.6	121
11	Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environmental Science and Pollution Research, 2015, 22, 3361-3382.	2.7	108
12	Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 2011, 33, 877-886.	1.0	107
13	Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environmental and Experimental Botany, 2019, 161, 277-289.	2.0	107
14	Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulation, 2016, 78, 1-11.	1.8	101
15	Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide - Biology and Chemistry, 2017, 68, 111-124.	1.2	95
16	Ethylene Potentiates Sulfur-Mediated Reversal of Cadmium Inhibited Photosynthetic Responses in Mustard. Frontiers in Plant Science, 2016, 7, 1628.	1.7	79
17	Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses through Increase in Use-Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard. Frontiers in Plant Science, 2016, 7, 44.	1.7	75
18	Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiology and Biochemistry, 2016, 104, 1-10	2.8	74

Asim Masood

#	Article	IF	CITATIONS
19	Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signaling and Behavior, 2013, 8, e22478.	1.2	69
20	Methyl Jasmonate Alleviates Cadmium-Induced Photosynthetic Damages through Increased S-Assimilation and Glutathione Production in Mustard. Frontiers in Plant Science, 2016, 7, 1933.	1.7	69
21	Role of ethylene in responses of plants to nitrogen availability. Frontiers in Plant Science, 2015, 6, 927.	1.7	58
22	Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. Crop Journal, 2016, 4, 153-161.	2.3	56
23	Ethylene Supplementation Increases PSII Efficiency and Alleviates Chromium-Inhibited Photosynthesis Through Increased Nitrogen and Sulfur Assimilation in Mustard. Journal of Plant Growth Regulation, 2018, 37, 1300-1317.	2.8	54
24	Mechanisms and Role of Nitric Oxide in Phytotoxicity-Mitigation of Copper. Frontiers in Plant Science, 2020, 11, 675.	1.7	48
25	Mechanistic Elucidation of Salicylic Acid and Sulphur-Induced Defence Systems, Nitrogen Metabolism, Photosynthetic, and Growth Potential of Mungbean (Vigna radiata) Under Salt Stress. Journal of Plant Growth Regulation, 2021, 40, 1000-1016.	2.8	47
26	Sulfur and Nitrogen Co-ordinately Improve Photosynthetic Efficiency, Growth and Proline Accumulation in Two Cultivars of Mustard Under Salt Stress. Journal of Plant Biochemistry & Physiology, 2013, 1, .	0.5	45
27	Nitric Oxide Pre-Treatment Advances Seed Germination and Alleviates Copper-Induced Photosynthetic Inhibition in Indian Mustard. Plants, 2020, 9, 776.	1.6	41
28	The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. Plant Physiology and Biochemistry, 2020, 155, 523-534.	2.8	40
29	The key roles of salicylic acid and sulfur in plant salinity stress tolerance. Journal of Plant Growth Regulation, 2022, 41, 1891-1904.	2.8	38
30	Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Scientific Reports, 2021, 11, 12650.	1.6	36
31	Ethylene and Polyamines in Counteracting Heavy Metal Phytotoxicity: A Crosstalk Perspective. Journal of Plant Growth Regulation, 2018, 37, 1050-1065.	2.8	25
32	Sulfur-mediated control of salinity impact on photosynthesis and growth in mungbean cultivars screened for salt tolerance involves glutathione and proline metabolism, and glucose sensitivity. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	22
33	Coordinated Role of Nitric Oxide, Ethylene, Nitrogen, and Sulfur in Plant Salt Stress Tolerance. Stresses, 2021, 1, 181-199.	1.8	22
34	Hydrogen peroxide potentiates defense system in presence of sulfur to protect chloroplast damage and photosynthesis of wheat under drought stress. Physiologia Plantarum, 2021, 172, 922-934.	2.6	20
35	Ethylene Supplementation Combined with Split Application of Nitrogen and Sulfur Protects Salt-Inhibited Photosynthesis through Optimization of Proline Metabolism and Antioxidant System in Mustard (Brassica juncea L.). Plants, 2021, 10, 1303.	1.6	20
36	Control of Elevated Ion Accumulation, Oxidative Stress, and Lipid Peroxidation with Salicylic Acid-Induced Accumulation of Glycine Betaine in Salinity-Exposed Vigna radiata L. Applied Biochemistry and Biotechnology, 2021, 193, 3301-3320.	1.4	20

Asim Masood

#	Article	IF	CITATIONS
37	Soil Sulfur Sources Differentially Enhance Cadmium Tolerance in Indian Mustard (Brassica juncea L.). Soil Systems, 2021, 5, 29.	1.0	16
38	Ethylene-nitrogen synergism induces tolerance to copper stress by modulating antioxidant system and nitrogen metabolism and improves photosynthetic capacity in mustard. Environmental Science and Pollution Research, 2022, 29, 49029-49049.	2.7	16
39	The coordinated role of ethylene and glucose in sulfur-mediated protection of photosynthetic inhibition by cadmium. Plant Signaling and Behavior, 2012, 7, 1420-1422.	1.2	12
40	Abscisic Acid in Coordination with Nitrogen Alleviates Salinity-Inhibited Photosynthetic Potential in Mustard by Improving Proline Accumulation and Antioxidant Activity. Stresses, 2021, 1, 162-180.	1.8	10
41	Involvement of Ethylene in Reversal of Salt Stress by Salicylic Acid in the Presence of Sulfur in Mustard (Brassica juncea L.). Journal of Plant Growth Regulation, 2022, 41, 3449-3466.	2.8	9
42	Appraisal of functional significance of sulfur assimilatory products in plants under elevated metal accumulation. Crop and Pasture Science, 2022, 73, 573-584.	0.7	5
43	Nitrogen Sources Mitigate Cadmium Phytotoxicity Differentially by Modulating Cellular Buffers, N-assimilation, Non-protein Thiols, and Phytochelatins in Mustard (Brassica juncea L.). Journal of Soil Science and Plant Nutrition, 2022, 22, 3847-3867.	1.7	3
44	Potential of Different Sources of Sulfur in Mitigating Cadmium Induced Toxicity in Mustard. Biology and Life Sciences Forum, 2020, 4, .	0.6	0