Marco Demaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429107/publications.pdf

Version: 2024-02-01

86 15,801 46 80 papers citations h-index g-index

90 90 90 15185 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
2	Hallmarks of Cellular Senescence. Trends in Cell Biology, 2018, 28, 436-453.	3.6	1,474
3	An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 2014, 31, 722-733.	3.1	1,376
4	Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 2016, 22, 78-83.	15.2	1,273
5	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.	15.2	994
6	Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 2017, 7, 165-176.	7.7	881
7	MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 2015, 17, 1049-1061.	4.6	802
8	Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 2012, 23, 2066-2075.	0.9	725
9	The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 2015, 349, aaa5612.	6.0	693
10	Cellular Senescence: Aging, Cancer, and Injury. Physiological Reviews, 2019, 99, 1047-1078.	13.1	641
11	Unmasking Transcriptional Heterogeneity in Senescent Cells. Current Biology, 2017, 27, 2652-2660.e4.	1.8	559
12	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	3.0	395
13	Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Reports, 2018, 22, 930-940.	2.9	342
14	Senescent Cells in Cancer Therapy: Friends or Foes?. Trends in Cancer, 2020, 6, 838-857.	3.8	259
15	A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2, 823-842.	1.4	231
16	Cellular senescence and the aging brain. Experimental Gerontology, 2015, 68, 3-7.	1.2	218
17	Glucocorticoids suppress selected components of the senescenceâ€associated secretory phenotype. Aging Cell, 2012, 11, 569-578.	3.0	172
18	Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 2017, 22, 786-795.	3.2	149

#	Article	IF	Citations
19	A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends in Cell Biology, 2020, 30, 777-791.	3.6	138
20	Constitutively Active Stat3 Enhances Neu-Mediated Migration and Metastasis in Mammary Tumors via Upregulation of Cten. Cancer Research, 2010, 70, 2558-2567.	0.4	131
21	Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?. Journal of Internal Medicine, 2013, 273, 429-436.	2.7	131
22	Systemic clearance of <i>p16^{INK4a}</i> êpositive senescent cells mitigates ageâ€associated intervertebral disc degeneration. Aging Cell, 2019, 18, e12927.	3.0	118
23	Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin. Journal of Investigative Dermatology, 2015, 135, 1722-1726.	0.3	102
24	Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. Journal of Molecular Biology, 2019, 431, 2629-2643.	2.0	100
25	Senescent Cells and Their Secretory Phenotype as Targets for Cancer Therapy. Interdisciplinary Topics in Gerontology, 2013, 38, 17-27.	3.6	95
26	SILAC Analysis Reveals Increased Secretion of Hemostasis-Related Factors by Senescent Cells. Cell Reports, 2019, 28, 3329-3337.e5.	2.9	94
27	Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nature Protocols, 2021, 16, 2471-2498.	5.5	92
28	PKM2, STAT3 and HIF-1α. Jak-stat, 2012, 1, 194-196.	2.2	87
29	Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. Journal of Investigative Dermatology, 2021, 141, 1119-1126.	0.3	87
30	Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Scientific Reports, 2016, 5, 17895.	1.6	85
31	Of Flies, Mice, and Men: Evolutionarily Conserved Tissue Damage Responses and Aging. Developmental Cell, 2015, 32, 9-18.	3.1	81
32	Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metabolism, 2021, 33, 1124-1136.e5.	7.2	77
33	Cellular senescence as a potential mediator of COVIDâ€19 severity in the elderly. Aging Cell, 2020, 19, e13237.	3.0	75
34	Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Science Translational Medicine, 2020, 12, .	5.8	74
35	Effects of Negative Pressure Wound Therapy on Healing of Open Wounds in Dogs. Veterinary Surgery, 2011, 40, 658-669.	0.5	73
36	Caloric restriction and cellular senescence. Mechanisms of Ageing and Development, 2018, 176, 19-23.	2.2	73

#	Article	IF	CITATIONS
37	Mitochondrial DNA damage induces apoptosis in senescent cells. Cell Death and Disease, 2013, 4, e727-e727.	2.7	70
38	Cellular Senescence Promotes Skin Carcinogenesis through p38MAPK and p44/42MAPK Signaling. Cancer Research, 2020, 80, 3606-3619.	0.4	68
39	Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10407-10412.	3.3	67
40	Cellular senescence and tumor promotion: Is aging the key?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 155-167.	3.3	67
41	Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Molecular Cell, 2021, 81, 2041-2052.e6.	4.5	64
42	Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death and Disease, 2020, 11, 854.	2.7	59
43	STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death and Differentiation, 2012, 19, 1390-1397.	5.0	57
44	STAT3 and metabolism: How many ways to use a single molecule?. International Journal of Cancer, 2014, 135, 1997-2003.	2.3	57
45	The effects of graded caloric restriction: <scp>XII</scp> . Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell, 2018, 17, e12746.	3.0	52
46	The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Human Reproduction Update, 2022, 28, 172-189.	5.2	51
47	Hypoxia-inducible factor-1 and neuroglobin expression. Neuroscience Letters, 2012, 514, 137-140.	1.0	50
48	Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology, 2016, 62, 513-518.	1.4	48
49	Biological functions of therapy-induced senescence in cancer. Seminars in Cancer Biology, 2022, 81, 5-13.	4.3	46
50	Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell, 2019, 18, e12971.	3.0	40
51	The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Reports, 2021, 22, e52243.	2.0	38
52	Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mechanisms of Ageing and Development, 2021, 199, 111572.	2.2	38
53	ldentification of stable senescenceâ€associated reference genes. Aging Cell, 2019, 18, e12911.	3.0	37
54	Link between increased cellular senescence and extracellular matrix changes in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L48-L60.	1.3	36

#	Article	IF	CITATIONS
55	STAT3 Activities and Energy Metabolism: Dangerous Liaisons. Cancers, 2014, 6, 1579-1596.	1.7	35
56	Pharmacological CDK4/6 inhibition reveals a p53â€dependent senescent state with restricted toxicity. EMBO Journal, 2022, 41, e108946.	3.5	35
57	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	1.4	32
58	From the nucleus to the mitochondria and back: The odyssey of a multitask STAT3. Cell Cycle, 2011, 10, 3221-3222.	1.3	30
59	p53 and rapamycin are additive. Oncotarget, 2015, 6, 15802-15813.	0.8	29
60	A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Molecular Cell, 2021, 81, 4907-4923.e8.	4.5	28
61	Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, , .	0.2	27
62	Pro-malignant properties of STAT3 during chronic inflammation. Oncotarget, 2012, 3, 359-360.	0.8	23
63	Identification of distinct and ageâ€dependent p16 ^{High} microglia subtypes. Aging Cell, 2021, 20, e13450.	3.0	18
64	Cellular senescence. Current Biology, 2022, 32, R448-R452.	1.8	16
65	Senescent cells: New target for an old treatment?. Molecular and Cellular Oncology, 2017, 4, e1299666.	0.3	15
66	Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Cells, 2021, 10, 158.	1.8	14
67	To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Research Reviews, 2021, 67, 101267.	5.0	13
68	Early ageing after cytotoxic treatment for testicular cancer and cellular senescence: Time to act. Critical Reviews in Oncology/Hematology, 2020, 151, 102963.	2.0	12
69	Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist. Cancer Letters, 2022, 525, 67-75.	3.2	12
70	The Quest to Define and Target Cellular Senescence in Cancer. Cancer Research, 2021, 81, 6087-6089.	0.4	12
71	Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mechanisms of Ageing and Development, 2020, 191, 111328.	2.2	10
72	A novel suicide gene therapy for the treatment of p16Ink4a-overexpressing tumors. Oncotarget, 2018, 9, 7274-7281.	0.8	9

#	Article	IF	CITATIONS
73	A mouse model for spatial and temporal expression of HGF in the heart. Transgenic Research, 2011, 20, 1203-1216.	1.3	8
74	High dietary protein and fat contents exacerbate hepatic senescence and SASP in mice. FEBS Journal, 2023, 290, 1340-1347.	2.2	8
75	Matters of life and breath: A role for hypoxia in determining cell state. Aging, 2012, 4, 523-524.	1.4	5
76	From tissue invasion to glucose metabolism: the many aspects of signal transducer and activator of transcription 3 pro-oncogenic activities. Hormone Molecular Biology and Clinical Investigation, 2012, 10, 217-25.	0.3	1
77	Consequences of senotherapies for tissue repair and reprogramming. Translational Medicine of Aging, 2019, 3, 31-36.	0.6	1
78	Cellular Senescence and Tumor Promotion. , 2020, , 55-69.		1
79	Gene therapy for p16-overexpressing cells. Aging, 2018, 10, 518-519.	1.4	1
80	Abstract 466: Cellular senescence drives skin carcinogenesis. , 2018, , .		1
81	Senescence and Cellular Immortality. , 2017, , .		0
82	Abstract IA016: Cellular senescence in cancer therapy: Friend or foe?., 2021,,.		0
83	A novel transcriptomic-based classifier for senescent cancer cells. Trends in Cancer, 2021, 7, 971-973.	3.8	0
84	Molecular mechanisms of cellular senescence. , 2022, , 221-230.		0
85	Cellular Senescence and Tumor Promotion. , 2018, , 1-15.		0
86	SILAC Analysis Reveals a Role for the Senescence-Associated Secretory Phenotype in Hemostasis. SSRN Electronic Journal, 0, , .	0.4	0