
Mauro Vallati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2014 International Planning Competition: Progress and Trends. AI Magazine, 2015, 36, 90-98.	1.4	56
2	Moddicom: a complete and easily accessible library for prognostic evaluations relying on image features. , 2015, 2015, 771-4.		39
3	Summary Report of the First International Competition on Computational Models of Argumentation. Al Magazine, 2016, 37, 102-104.	1.4	36
4	Towards a modular decision support system for radiomics: A case study on rectal cancer. Artificial Intelligence in Medicine, 2019, 96, 145-153.	3.8	36
5	pMineR: An Innovative R Library for Performing Process Mining in Medicine. Lecture Notes in Computer Science, 2017, , 351-355.	1.0	34
6	Computing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach. Lecture Notes in Computer Science, 2014, , 176-193.	1.0	32
7	On the manipulation of articulated objects in human–robot cooperation scenarios. Robotics and Autonomous Systems, 2018, 109, 139-155.	3.0	24
8	Generating and Comparing Knowledge Graphs of Medical Processes Using pMineR. , 2017, , .		20
9	What you always wanted to know about the deterministic part of the International Planning Competition (IPC) 2014 (but were too afraid to ask). Knowledge Engineering Review, 2018, 33, .	2.1	19
10	Automated planning for Urban traffic control: Strategic vehicle routing toÂrespectÂair quality limitations. Intelligenza Artificiale, 2016, 10, 113-128.	1.0	17
11	Distributed Learning to Protect Privacy inÂMulti-centric Clinical Studies. Lecture Notes in Computer Science, 2015, , 65-75.	1.0	15
12	Symbolic Melodic Similarity: State of the Art and Future Challenges. Computer Music Journal, 2016, 40, 70-83.	0.3	15
13	A Framework for Event Log Generation and Knowledge Representation for Process Mining in Healthcare. , 2018, , .		15
14	Engineering Knowledge for Automated Planning. , 2017, , .		14
15	Automated Planning for Urban Traffic Management. , 2017, , .		14
16	Clinical Guidelines: A Crossroad of Many Research Areas. Challenges and Opportunities in Process Mining for Healthcare. Lecture Notes in Business Information Processing, 2019, , 545-556.	0.8	14
17	What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper. International Journal of Environmental Research and Public Health, 2020, 17, 6616.	1.2	12
18	Static and Dynamic Portfolio Methods for Optimal Planning: An Empirical Analysis. International Journal on Artificial Intelligence Tools, 2017, 26, 1760006.	0.7	11

#	Article	IF	CITATIONS
19	GraphBAD: A general technique for anomaly detection in security information and event management. Concurrency Computation Practice and Experience, 2018, 30, e4433.	1.4	11
20	How we designed winning algorithms for abstract argumentation and which insight we attained. Artificial Intelligence, 2019, 276, 1-40.	3.9	10
21	Enabling the use of a planning agent for urban traffic management via enriched and integrated urban data. Transportation Research Part C: Emerging Technologies, 2019, 98, 284-297.	3.9	10
22	Portfolio-based planning: State of the art, common practice and open challenges. Al Communications, 2015, 28, 717-733.	0.8	9
23	An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT. International Journal on Artificial Intelligence Tools, 2017, 26, 1750002.	0.7	9
24	PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE. Future Oncology, 2017, 13, 2171-2181.	1.1	9
25	On the impact of configuration on abstract argumentation automated reasoning. International Journal of Approximate Reasoning, 2018, 92, 120-138.	1.9	9
26	A Principled Analysis of the Interrelation between Vehicular Communication and Reasoning Capabilities of Autonomous Vehicles. , 2018, , .		9
27	ASAP: An Automatic Algorithm Selection Approach for Planning. International Journal on Artificial Intelligence Tools, 2014, 23, 1460032.	0.7	8
28	Development and validation of a machine learning-based predictive model to improve the prediction of inguinal status of anal cancer patients: A preliminary report. Oncotarget, 2017, 8, 108509-108521.	0.8	8
29	Exploiting automated planning for efficient centralized vehicle routing and mitigating congestion in urban road networks. , 2019, , .		8
30	The Fifth International Competition on Knowledge Engineering for Planning and Scheduling: Summary and Trends. Al Magazine, 2017, 38, 104-106.	1.4	7
31	A Hypercat-Enabled Semantic Internet of Things Data Hub. Lecture Notes in Computer Science, 2017, , 125-137.	1.0	7
32	Automated Planning Techniques for Robot Manipulation Tasks Involving Articulated Objects. Lecture Notes in Computer Science, 2017, , 483-497.	1.0	7
33	A Hybrid Automated Planning Approach for Urban Real-time Routing of Connected Vehicles. , 2021, , .		7
34	Inner entanglements: Narrowing the search in classical planning by problem reformulation. Computational Intelligence, 2019, 35, 395-429.	2.1	6
35	The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies. Transport Policy, 2022, 122, 1-10.	3.4	6

Mauro Vallati

#	Article	IF	CITATIONS
37	Exploiting macro-actions and predicting plan length in planning as satisfiability. Al Communications, 2015, 28, 323-344.	0.8	5
38	Outer entanglements: a general heuristic technique for improving the efficiency of planning algorithms. Journal of Experimental and Theoretical Artificial Intelligence, 2018, 30, 831-856.	1.8	5
39	Improving Domain-Independent Planning via Critical Section Macro-Operators. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 7546-7553.	3.6	5
40	An experimental analysis on the similarity of argumentation semantics. Argument and Computation, 2020, 11, 269-304.	0.7	5
41	Automated Planning Encodings for the Manipulation of Articulated Objects in 3D with Gravity. Lecture Notes in Computer Science, 2019, , 135-150.	1.0	5
42	Could Machine Learning Improve the Prediction of Pelvic Nodal Status of Prostate Cancer Patients? Preliminary Results of a Pilot Study. Cancer Investigation, 2015, 33, 232-240.	0.6	4
43	Automated Training Plan Generation for Athletes. , 2018, , .		4
44	Effective Real-Time Urban Traffic Routing: An Automated Planning Approach. , 2021, , .		4
45	Exploiting Macro-actions and Predicting Plan Length in Planning as Satisfiability. Lecture Notes in Computer Science, 2011, , 189-200.	1.0	4
46	Exploiting Classical Planning Grounding in Hybrid PDDL+ Planning Engines. , 2020, , .		4
47	Manipulation of Articulated Objects Using Dual-arm Robots via Answer Set Programming. Theory and Practice of Logic Programming, 2021, 21, 372-401.	1.1	4
48	Learnability of Specific Structural Patterns of Planning Problems. , 2013, , .		3
49	On the exploitation of Automated Planning for efficient decision making in road traffic accident management. , 2016, , .		3
50	Performance robustness of AI planners in the 2014 International Planning Competition. AI Communications, 2018, 31, 445-463.	0.8	3
51	On the Robustness of Domain-Independent Planning Engines. , 2019, , .		3
52	MEvo: a framework for effective macro sets evolution. Journal of Experimental and Theoretical Artificial Intelligence, 2020, 32, 685-703.	1.8	3
53	A Quality Framework for Automated Planning Knowledge Models. , 2021, , .		3
54	On the Importance of Domain Model Configuration for Automated Planning Engines. Journal of Automated Reasoning, 2021, 65, 727-773.	1.1	3

#	Article	IF	CITATIONS
55	ASCoL: A Tool for Improving Automatic Planning Domain Model Acquisition. Lecture Notes in Computer Science, 2015, , 438-451.	1.0	3
56	An Innovative Heuristic for Planning-Based Urban Traffic Control. Lecture Notes in Computer Science, 2018, , 181-193.	1.0	3
57	On the Feasibility of Distributed Process Mining in Healthcare. Lecture Notes in Computer Science, 2019, , 445-452.	1.0	3
58	On-the-Fly Knowledge Acquisition for Automated Planning Applications: Challenges and Lessons Learnt. , 2022, , .		3
59	Portfolio Methods for Optimal Planning: An Empirical Analysis. , 2015, , .		2
60	Identifying and Exploiting Features for Effective Plan Retrieval in Case-Based Planning. Fundamenta Informaticae, 2016, 149, 209-240.	0.3	2
61	Security auditing in the fog. , 2017, , .		2
62	On the predictability of domainâ€independent temporal planners. Computational Intelligence, 2019, 35, 745-773.	2.1	2
63	Centralised Versus Decentralised Traffic Optimisation of Urban Road Networks: A Simulation Study. , 2020, , .		2
64	Effective grounding for hybrid planning problems represented in PDDL+. Knowledge Engineering Review, 2021, 36, .	2.1	2
65	On the Configuration of SAT Formulae. Lecture Notes in Computer Science, 2019, , 264-277.	1.0	2
66	Exploiting Machine Learning for Predicting Nodal Status in Prostate Cancer Patients. IFIP Advances in Information and Communication Technology, 2013, , 61-70.	0.5	2
67	RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy. , 2016, , .		2
68	Autonomic System Architecture: An Automated Planning Perspective. IFIP Advances in Information and Communication Technology, 2013, , 121-130.	0.5	2
69	On the Efficient Allocation of Diagnostic Activities in Modern Imaging Departments. Lecture Notes in Computer Science, 2015, , 103-109.	1.0	2
70	An ASP-Based Framework for the Manipulation of Articulated Objects Using Dual-Arm Robots. Lecture Notes in Computer Science, 2019, , 32-44.	1.0	2
71	How to Plan Roadworks in Urban Regions? A Principled Approach Based on Al Planning. Lecture Notes in Computer Science, 2019, , 453-460.	1.0	2
72	Unveiling the oracle: Artificial intelligence for the 21st century. Intelligent Decision Technologies, 2018, 12, 371-379.	0.6	1

#	Article	IF	CITATIONS
73	Predictive models and abstract argumentation: the case of high-complexity semantics. Knowledge Engineering Review, 2019, 34, .	2.1	1
74	Maximising goals achievement through abstract argumentation frameworks: An optimal approach. Expert Systems With Applications, 2020, 141, 112930.	4.4	1
75	In Defence of Design Patterns for AI Planning Knowledge Models. Lecture Notes in Computer Science, 2021, , 191-203.	1.0	1
76	On the Combination of Argumentation Solvers into Parallel Portfolios. Lecture Notes in Computer Science, 2017, , 315-327.	1.0	1
77	Underestimation vs. Overestimation in SAT-Based Planning. Lecture Notes in Computer Science, 2013, , 276-287.	1.0	1
78	On the Stylistic Evolution of a Society of Virtual Melody Composers. Lecture Notes in Computer Science, 2015, , 249-260.	1.0	1
79	Discovering Interesting Trends in Real Medical Data: A Study in Diabetic Retinopathy. Lecture Notes in Computer Science, 2015, , 134-140.	1.0	1
80	Bridging the Gap between Knowledge Representation and Electronic Health Records. , 2016, , .		1
81	On the Evolution of Planner-Specific Macro Sets. Lecture Notes in Computer Science, 2017, , 443-454.	1.0	1
82	A Sound (But Incomplete) Polynomial Translation fromÂDiscretised PDDL+ toÂNumeric Planning. Lecture Notes in Computer Science, 2022, , 18-31.	1.0	1
83	Efficient planning through automatic configuration and machine learning. Al Communications, 2013, 26, 319-321.	0.8	Ο
84	Determining Representativeness of Training Plans: A Case of Macro-Operators. , 2018, , .		0
85	On the Configuration of Robust Static Parallel Portfolios for Efficient Plan Generation. Lecture Notes in Computer Science, 2018, , 15-27.	1.0	0
86	An Efficient Hybrid Planning Framework for In-Station Train Dispatching. Lecture Notes in Computer Science, 2021, , 168-182.	1.0	0
87	An Efficient Algorithm for Semi-stable Extensions. Lecture Notes in Computer Science, 2021, , 117-135.	1.0	0
88	Skeptical Reasoning with Preferred Semantics in Abstract Argumentation without Computing Preferred Extensions. , 2021, , .		0
89	A General Approach to Exploit Model Predictive Control for Guiding Automated Planning Search in Hybrid Domains. Lecture Notes in Computer Science, 2019, , 139-145.	1.0	Ο
90	Improving Domain-Independent Heuristic State-Space Planning via plan cost predictions. Journal of Experimental and Theoretical Artificial Intelligence, 2023, 35, 849-875.	1.8	0

#	Article	IF	CITATIONS
91	Reducing Traffic Congestion in Urban Areas via Real-Time Re-Routing: A Simulation Study. Lecture Notes in Computer Science, 2020, , 69-81.	1.0	0
92	A Mixed-Integer Programming Approach for Scheduling Roadworks in Urban Regions. Lecture Notes in Computer Science, 2020, , 82-93.	1.0	0
93	Configurable Heuristic Adaptation for Improving Best First Search in Al Planning. , 2020, , .		0
94	Collaborative Robotic Manipulation: A Use Case of Articulated Objects in Three-dimensions with Gravity. , 2020, , .		0
95	On the Configuration of More and Less Expressive Logic Programs. Theory and Practice of Logic Programming, 2023, 23, 415-443.	1.1	0