ChungHyuk Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6428471/publications.pdf

Version: 2024-02-01

28 papers 669 citations 15 h-index 26 g-index

29 all docs 29 docs citations

times ranked

29

471 citing authors

#	Article	IF	CITATIONS
1	Electrolyte layer gas triggers cathode potential instability in CO2 electrolyzers. Journal of Power Sources, 2022, 520, 230879.	4.0	6
2	Tuning Electrode-Membrane Interface for Highly Efficient Polymer Electrolyte Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1419-1419.	0.0	0
3	Groovy Electrodes Enable Facile O ₂ and H ⁺ Transport in PEMFCs. ECS Meeting Abstracts, 2022, MA2022-01, 1420-1420.	0.0	1
4	Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochimica Acta, 2021, 373, 137879.	2.6	20
5	Unstable Cathode Potential in Alkaline Flow Cells for CO ₂ Electroreduction Driven by Gas Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5570-5579.	3 . 2	14
6	Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers. Cell Reports Physical Science, 2021, 2, 100580.	2.8	12
7	Temperature enhances the ohmic and mass transport behaviour in membrane electrode assembly carbon dioxide electrolyzers. Energy Conversion and Management, 2021, 243, 114302.	4.4	7
8	Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2414-2427.	4.0	8
9	Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers. Journal of Power Sources, 2020, 446, 227312.	4.0	49
10	Critical Current Density as a Performance Indicator for Gas-Evolving Electrochemical Devices. Cell Reports Physical Science, 2020, 1, 100147.	2.8	38
11	Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO ₂ Electrolysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54585-54595.	4.0	22
12	Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers. Energy Conversion and Management, 2020, 226, 113545.	4.4	34
13	Accelerating Bubble Detachment in Porous Transport Layers with Patterned Through-Pores. ACS Applied Energy Materials, 2020, 3, 9676-9684.	2,5	37
14	Transient Gas Distribution in Porous Transport Layers of Polymer Electrolyte Membrane Electrolyzers. Journal of the Electrochemical Society, 2020, 167, 024508.	1.3	31
15	Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 2695-2707.	2.5	31
16	Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers. Energy Conversion and Management, 2020, 213, 112797.	4.4	20
17	Formation of Liquid Water Pathways in PEM Fuel Cells: A 3-D Pore-Scale Perspective. Journal of the Electrochemical Society, 2020, 167, 054516.	1.3	14
18	Bubble Formation in the Electrolyte Triggers Voltage Instability in CO2 Electrolyzers. IScience, 2020, 23, 101094.	1.9	43

#	Article	IF	CITATIONS
19	In-Plane Transport in Water Electrolyzer Porous Transport Layers with Through Pores. Journal of the Electrochemical Society, 2020, 167, 124522.	1.3	14
20	Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers. Journal of Power Sources, 2019, 437, 226910.	4.0	64
21	Resolving the gas diffusion layer substrate land and channel region contributions to the oxygen transport resistance of a partially-saturated substrate. Electrochimica Acta, 2019, 328, 135001.	2.6	10
22	Detecting cathode corrosion in polymer electrolyte membrane fuel cells in dead-ended anode mode via alternating current impedance. Journal of Power Sources, 2019, 439, 227089.	4.0	7
23	Compressible-Gas Invasion into Liquid-Saturated Porous Media: Application to Polymer-Electrolyte-Membrane Electrolyzers. Physical Review Applied, 2019, 11, .	1.5	26
24	In-plane Mass Transport in Polymer Electrolyte Membrane Electrolyzer Porous Transport Layers with Through Pores. ECS Transactions, 2019, 92, 787-799.	0.3	4
25	Modeling the Effect of Fibre Surface Morphology on Liquid Water Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers. Transport in Porous Media, 2018, 121, 437-458.	1.2	5
26	The effect of cathode nitrogen purging on cell performance and in operando neutron imaging of a polymer electrolyte membrane electrolyzer. Electrochimica Acta, 2018, 279, 91-98.	2.6	30
27	Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers. International Journal of Hydrogen Energy, 2017, 42, 2724-2735.	3.8	62
28	Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers. International Journal of Heat and Mass Transfer, 2017, 107, 418-431.	2.5	60