Pedro R Lowenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6428110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Reports, 2022, 38, 110216.	2.9	32
2	Murine brain tumor microenvironment immunophenotyping using mass cytometry. STAR Protocols, 2022, 3, 101357.	0.5	1
3	Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano, 2022, 16, 8729-8750.	7.3	43
4	Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nature Communications, 2022, 13, .	5.8	29
5	Targeting gliomas with STAT3-silencing nanoparticles. Molecular and Cellular Oncology, 2021, 8, 1870647.	0.3	8
6	A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncolmmunology, 2021, 10, 1939601.	2.1	14
7	Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	70
8	Current Approaches for Glioma Gene Therapy and Virotherapy. Frontiers in Molecular Neuroscience, 2021, 14, 621831.	1.4	54
9	Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 680021.	1.6	33
10	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	1.3	10
11	Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Frontiers in Oncology, 2021, 11, 703764.	1.3	27
12	G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Science Advances, 2021, 7, eabh3243.	4.7	53
13	Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro-Oncology, 2020, 22, 195-206.	0.6	14
14	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature Communications, 2020, 11, 5687.	5.8	142
15	Tumor mutational burden predicts survival in patients with low-grade gliomas expressing mutated IDH1. Neuro-Oncology Advances, 2020, 2, vdaa042.	0.4	12
16	An Optimized Protocol for InÂVivo Analysis of Tumor Cell Division in a Sleeping Beauty-Mediated Mouse Glioma Model. STAR Protocols, 2020, 1, 100044.	0.5	6
17	Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature Communications, 2020, 11, 3811.	5.8	103
18	Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 9654.	1.8	16

#	Article	IF	CITATIONS
19	Genetically Engineered Mouse Model of Brainstem High-Grade Glioma. STAR Protocols, 2020, 1, 100165.	0.5	4
20	Laser Capture Microdissection of Glioma Subregions for Spatial and Molecular Characterization of Intratumoral Heterogeneity, Oncostreams, and Invasion. Journal of Visualized Experiments, 2020, , .	0.2	7
21	Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. PLoS Computational Biology, 2020, 16, e1007611.	1.5	21
22	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	1.9	15
23	Functional characterization of tumor antigen-specific T-cells isolated from the tumor microenvironment of sleeping beauty induced murine glioma models. Methods in Enzymology, 2020, 631, 91-106.	0.4	2
24	Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses. Neuro-Oncology, 2020, 22, 806-818.	0.6	34
25	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	1.4	16
26	Therapeutic Efficacy of Immune Stimulatory Thymidine Kinase and fms-like Tyrosine Kinase 3 Ligand (TK/Flt3L) Gene Therapy in a Mouse Model of High-Grade Brainstem Glioma. Clinical Cancer Research, 2020, 26, 4080-4092.	3.2	18
27	Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. IScience, 2020, 23, 101453.	1.9	47
28	Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clinical Cancer Research, 2020, 26, 4369-4380.	3.2	48
29	Immune-stimulatory (TK/Flt3L) gene therapy opens the door to a promising new treatment strategy against brainstem gliomas. Oncotarget, 2020, 11, 4607-4612.	0.8	7
30	CBIO-03. ATRX LOSS IN GLIOMA RESULTS IN EPIGENETIC DYSREGULATION OF CELL CYCLE PHASE TRANSITION. Neuro-Oncology, 2020, 22, ii16-ii16.	0.6	0
31	Title is missing!. , 2020, 16, e1007611.		0
32	Title is missing!. , 2020, 16, e1007611.		0
33	Title is missing!. , 2020, 16, e1007611.		0
34	Title is missing!. , 2020, 16, e1007611.		0
35	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	11.6	123
36	3131 ONCOSTREAMS: NOVEL DYNAMICS PATHOLOGICAL MULTICELLULAR STRUCTURES INVOLVED IN GLIOBLATOMA GROWTH AND INVASION. Journal of Clinical and Translational Science, 2019, 3, 111-111.	0.3	4

#	Article	IF	CITATIONS
37	High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano, 2019, 13, 1365-1384.	7.3	122
38	HGG-08. ATRX LOSS IN PEDIATRIC GBM RESULTS IN EPIGENETIC DYSREGULATION OF G2/M CHECKPOINT MAINTENANCE AND SENSITIVITY TO ATM INHIBITION. Neuro-Oncology, 2019, 21, ii88-ii88.	0.6	0
39	Evaluation of Biomarkers in Glioma by Immunohistochemistry on Paraffin-Embedded 3D Glioma Neurosphere Cultures. Journal of Visualized Experiments, 2019, , .	0.2	4
40	IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Science Translational Medicine, 2019, 11, .	5.8	169
41	ATIM-44. A PHASE I FIRST-IN-HUMAN TRIAL OF TWO ADENOVIRAL VECTORS EXPRESSING HSV1-TK AND FLT3L FOR TREATING NEWLY DIAGNOSED RESECTABLE MALIGNANT GLIOMA: THERAPEUTIC REPROGRAMMING OF THE BRAIN IMMUNE SYSTEM. Neuro-Oncology, 2019, 21, vi11-vi11.	0.6	4
42	EXTH-47. THERAPEUTIC REVERSAL OF PRENATAL PONTINE ID1 SIGNALING IN DIPG. Neuro-Oncology, 2019, 21, vi92-vi92.	0.6	0
43	TMIC-58. THE CELLULAR AND MOLECULAR BASIS FOR MESENCHYMAL TRANSFORMATION IN GLIOMAS. Neuro-Oncology, 2019, 21, vi260-vi260.	0.6	0
44	TMIC-62. FYN, AN EFFECTOR OF ONCOGENIC RECEPTOR TYROSINE KINASES SIGNALING IN GLIOBLASTOMA, INHIBITS ANTI-GLIOMA IMMUNE RESPONSES: IMPLICATIONS FOR IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, vi261-vi261.	0.6	1
45	TMIC-35. IDH1 MUTATION IN GLIOMA REPROGRAMS EARLY MYELOID DIFFERENTIATION IN THE BONE MARROW (BM) TO PRODUCE NON-IMUNESUPPRESSIVE NEUTROPHILS. Neuro-Oncology, 2019, 21, vi255-vi255.	0.6	0
46	Molecular ablation of tumor blood vessels inhibits therapeutic effects of radiation and bevacizumab. Neuro-Oncology, 2018, 20, 1356-1367.	0.6	8
47	Native Chromatin Immunoprecipitation Using Murine Brain Tumor Neurospheres. Journal of Visualized Experiments, 2018, , .	0.2	4
48	Current state and future prospects of immunotherapy for glioma. Immunotherapy, 2018, 10, 317-339.	1.0	60
49	Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clinical Immunology, 2018, 189, 34-42.	1.4	37
50	Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clinical Immunology, 2018, 189, 43-51.	1.4	27
51	Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. Oncolmmunology, 2018, 7, e1408750.	2.1	38
52	IMMU-63. IDH1 MUTATION REGULATE MYELOID CELLS PLASTICITY MEDIATING ANTI-GLIOMA IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi135-vi136.	0.6	0
53	CSIG-08. DYNAMICS OF GLIOMA GROWTH: SELF-ORGANIZATION GUIDES THE PATTERNING OF THE EXTRACELLULAR MATRIX AND REGULATES TUMOR PROGRESSION. Neuro-Oncology, 2018, 20, vi44-vi44.	0.6	1
54	Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1. Journal of Virology, 2017, 91, .	1.5	21

#	Article	IF	CITATIONS
55	Mutated Chromatin Regulatory Factors as Tumor Drivers in Cancer. Cancer Research, 2017, 77, 227-233.	0.4	46
56	Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. Molecular Therapy, 2017, 25, 232-248.	3.7	130
57	Single vs. combination immunotherapeutic strategies for glioma. Expert Opinion on Biological Therapy, 2017, 17, 543-554.	1.4	17
58	IMMU-58. IDH1 MUTATION REGULATES MYELOID CELLS MEDIATED IMMUNOSUPPRESSION IN GLIOMA. Neuro-Oncology, 2017, 19, vi125-vi126.	0.6	0
59	ANGI-10. GENETIC DOWN REGULATION OF CXCR4 IN GLIOMA CELLS REDUCES INVASION, REDUCES TUMOR PROGRESSION, AND INCREASES SENSITIVITY TO RADIATION. Neuro-Oncology, 2016, 18, vi17-vi17.	0.6	0
60	CBIO-10. REVERSIBILITY OF GLIOMA STEM CELLS' SPHERE FORMATION EXPLAINS THEIR IN VITRO BEHAVIOR AND IN VIVO TUMORIGENESIS POTENTIAL. Neuro-Oncology, 2016, 18, vi37-vi37.	0.6	0
61	ATRX mutations and glioblastoma: Impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Molecular and Cellular Oncology, 2016, 3, e1167158.	0.3	41
62	Multiple Expressed Endogenous Glioma Epitopes as Novel Vaccines for Gliomas. Clinical Cancer Research, 2016, 22, 4760-4762.	3.2	3
63	ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Science Translational Medicine, 2016, 8, 328ra28.	5.8	212
64	Natural killer cells require monocytic Gr-1 ⁺ /CD11b ⁺ myeloid cells to eradicate orthotopically engrafted glioma cells. Oncolmmunology, 2016, 5, e1163461.	2.1	28
65	Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms. Methods in Molecular Biology, 2016, 1382, 467-482.	0.4	8
66	Reversibility of glioma stem cells' phenotypes explains their complex <i>in vitro</i> and <i>in vivo</i> behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool. Oncotarget, 2016, 7, 63020-63041	0.8	12
67	Characterizing and targeting <i>PDGFRA</i> alterations in pediatric high-grade glioma. Oncotarget, 2016, 7, 65696-65706.	0.8	55
68	CXCR4 increases <i>in-vivo</i> glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget, 2016, 7, 83701-83719.	0.8	75
69	Isolation and Flow Cytometric Analysis of Glioma-infiltrating Peripheral Blood Mononuclear Cells. Journal of Visualized Experiments, 2015, , .	0.2	14
70	Transposon Mediated Integration of Plasmid DNA into the Subventricular Zone of Neonatal Mice to Generate Novel Models of Glioblastoma. Journal of Visualized Experiments, 2015, , .	0.2	33
71	Glioma trials and viral tribulations: can anything be concluded from non-controlled trials?. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 125-125.	0.9	0
72	Gene Therapy Approaches Using Reproducible and Fully Penetrant Lentivirus-Mediated Endogenous Glioma Models. Neuromethods, 2015, , 341-354.	0.2	0

#	Article	IF	CITATIONS
73	The Value of EGFRvIII as the Target for Glioma Vaccines. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 42-50.	1.8	5
74	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
75	Cracking the glioma-NK inhibitory code: toward successful innate immunotherapy. Oncolmmunology, 2014, 3, e965573.	2.1	8
76	Blockade of mTOR Signaling via Rapamycin Combined with Immunotherapy Augments Antiglioma Cytotoxic and Memory T-Cell Functions. Molecular Cancer Therapeutics, 2014, 13, 3024-3036.	1.9	48
77	Blocking Immunosuppressive Checkpoints for Glioma Therapy: The More the Merrier!. Clinical Cancer Research, 2014, 20, 5147-5149.	3.2	24
78	Preclinical Characterization of Signal Transducer and Activator of Transcription 3 Small Molecule Inhibitors for Primary and Metastatic Brain Cancer Therapy. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 458-469.	1.3	32
79	Natural Killer Cells Eradicate Galectin-1–Deficient Glioma in the Absence of Adaptive Immunity. Cancer Research, 2014, 74, 5079-5090.	0.4	62
80	Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy. Neoplasia, 2014, 16, 543-561.	2.3	131
81	Temozolomide Does Not Impair Gene Therapy-Mediated Antitumor Immunity in Syngeneic Brain Tumor Models. Clinical Cancer Research, 2014, 20, 1555-1565.	3.2	32
82	Lentiviral-Induced High-Grade Gliomas in Rats: The Effects of PDGFB, HRAS-G12V, AKT, and IDH1-R132H. Neurotherapeutics, 2014, 11, 623-635.	2.1	10
83	Assessing the Role of STAT3 in DC Differentiation and Autologous DC Immunotherapy in Mouse Models of GBM. PLoS ONE, 2014, 9, e96318.	1.1	12
84	Therapeutic implications of perivascular invasion in the context of high-density brain microvascular networks: A study on recursive pattern formation in malignant glioma Journal of Clinical Oncology, 2014, 32, 2057-2057.	0.8	0
85	Progress in gene therapy for neurological disorders. Nature Reviews Neurology, 2013, 9, 277-291.	4.9	202
86	Gene therapy for brain tumors: Basic developments and clinical implementation. Neuroscience Letters, 2012, 527, 71-77.	1.0	53
87	Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics. Neoplasia, 2012, 14, 757-IN26.	2.3	46
88	Immune-mediated Loss of Transgene Expression From Virally Transduced Brain Cells Is Irreversible, Mediated by IFNγ, Perforin, and TNFα, and due to the Elimination of Transduced Cells. Molecular Therapy, 2012, 20, 808-819.	3.7	17
89	Gene Therapy-Mediated Reprogramming Tumor Infiltrating T Cells Using IL-2 and Inhibiting NF-ήB Signaling Improves the Efficacy of Immunotherapy in a Brain Cancer Model. Neurotherapeutics, 2012, 9, 827-843.	2.1	33
90	Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. Neuromethods, 2012, 77, 229-243.	0.2	9

#	Article	IF	CITATIONS
91	Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase 1 Clinical Trial. Human Gene Therapy Methods, 2012, 23, 271-284.	2.1	21
92	Combined Flt3L/TK Gene Therapy Induces Immunological Surveillance Which Mediates an Immune Response Against a Surrogate Brain Tumor Neoantigen. Molecular Therapy, 2011, 19, 1793-1801.	3.7	42
93	Engineering the Brain Tumor Microenvironment Enhances the Efficacy of Dendritic Cell Vaccination: Implications for Clinical Trial Design. Clinical Cancer Research, 2011, 17, 4705-4718.	3.2	35
94	Identification and Visualization of CD8+ T Cell Mediated IFN-Î ³ Signaling in Target Cells during an Antiviral Immune Response in the Brain. PLoS ONE, 2011, 6, e23523.	1.1	4
95	Exogenous fms-like tyrosine kinase 3 ligand overrides brain immune privilege and facilitates recognition of a neo-antigen without causing autoimmune neuropathology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14443-14448.	3.3	20
96	Gene Transfer into Rat Brain Using Adenoviral Vectors. Current Protocols in Neuroscience, 2010, 50, Unit 4.24.	2.6	29
97	A Novel Bicistronic High-Capacity Gutless Adenovirus Vector That Drives Constitutive Expression of Herpes Simplex Virus Type 1 Thymidine Kinase and Tet-Inducible Expression of Flt3L for Glioma Therapeutics. Journal of Virology, 2010, 84, 6007-6017.	1.5	37
98	HMGB1 Mediates Endogenous TLR2 Activation and Brain Tumor Regression. PLoS Medicine, 2009, 6, e1000010.	3.9	310
99	Release of HMGB1 in Response to Proapoptotic Glioma Killing Strategies: Efficacy and Neurotoxicity. Clinical Cancer Research, 2009, 15, 4401-4414.	3.2	95
100	Antiglioma Immunological Memory in Response to Conditional Cytotoxic/Immune-Stimulatory Gene Therapy: Humoral and Cellular Immunity Lead to Tumor Regression. Clinical Cancer Research, 2009, 15, 6113-6127.	3.2	68
101	Uncertainty in the Translation of Preclinical Experiments to Clinical Trials. Why do Most Phase III Clinical Trials Fail?. Current Gene Therapy, 2009, 9, 368-374.	0.9	70
102	Challenges in the evaluation, consent, ethics and history of early clinical trials - Implications of the Tuskegee 'trial' for safer and more ethical clinical trials. Current Opinion in Molecular Therapeutics, 2009, 11, 481-4.	2.8	4
103	Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro-Oncology, 2008, 10, 19-31.	0.6	68
104	With a Little Help From My f(X)riends!: The Basis of Ad5-Mediated Transduction of the Liver Revealed. Molecular Therapy, 2008, 16, 1004-1006.	3.7	6
105	Flt3L in Combination With HSV1-TK-mediated Gene Therapy Reverses Brain Tumor–induced Behavioral Deficits. Molecular Therapy, 2008, 16, 682-690.	3.7	43
106	Viral gene therapy for central nervous system diseases. , 2008, , 424-434.		0
107	Treg Depletion Inhibits Efficacy of Cancer Immunotherapy: Implications for Clinical Trials. PLoS ONE, 2008, 3, e1983.	1.1	109
108	HMGB1 Mediates Endogenous TLR2 Activation And Brain Tumor Regression FASEB Journal, 2008, 22, 515-515.	0.2	1

#	Article	IF	CITATIONS
109	Depletion of CD25+ T cells inhibits CD8+ T cells clonal expansion and glioblastoma multiforme regression FASEB Journal, 2008, 22, 514-514.	0.2	0
110	Immune Responses to Adenovirus and Adeno-Associated Vectors Used for Gene Therapy of Brain Diseases: The Role of Immunological Synapses in Understanding the Cell Biology of Neuroimmune Interactions. Current Gene Therapy, 2007, 7, 347-360.	0.9	144
111	One-year Expression From High-capacity Adenoviral Vectors in the Brains of Animals With Pre-existing Anti-adenoviral Immunity: Clinical Implications. Molecular Therapy, 2007, 15, 2154-2163.	3.7	78
112	Immunology of Neurological Gene Therapy: How T Cells Modulate Viral Vector-Mediated Therapeutic Transgene Expression Through Immunological Synapses. Neurotherapeutics, 2007, 4, 715-724.	2.1	20
113	Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. Journal of Neuro-Oncology, 2007, 85, 133-148.	1.4	300
114	Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells. Neuron Glia Biology, 2006, 2, 309-322.	2.0	29
115	Fms-Like Tyrosine Kinase 3 Ligand Recruits Plasmacytoid Dendritic Cells to the Brain. Journal of Immunology, 2006, 176, 3566-3577.	0.4	88
116	Combined Immunostimulation and Conditional Cytotoxic Gene Therapy Provide Long-term Survival in a Large Glioma Model. Cancer Research, 2005, 65, 7194-7204.	0.4	121
117	Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Human Gene Therapy, 2005, 16, 741-751.	1.4	137
118	The Case for Immunosuppression in Clinical Gene Transfer. Molecular Therapy, 2005, 12, 185-186.	3.7	22
119	Input Virion Proteins: Cryptic Targets of Antivector Immune Responses in Preimmunized Subjects. Molecular Therapy, 2004, 9, 771-774.	3.7	21
120	Inflammatory and Anti-glioma Effects of an Adenovirus Expressing Human Soluble Fms-like Tyrosine Kinase 3 Ligand (hsFlt3L): Treatment with hsFlt3L Inhibits Intracranial Glioma Progression. Molecular Therapy, 2004, 10, 1071-1084.	3.7	86
121	Virus Vectors for use in the Central Nervous System. International Review of Neurobiology, 2003, 55, 3-64.	0.9	8
122	Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends in Immunology, 2002, 23, 23-30.	2.9	125
123	Dendritic cells and immune responses in the central nervous system. Trends in Immunology, 2002, 23, 70.	2.9	10
124	Progress and challenges in viral vector-mediated gene transfer to the brain. Current Opinion in Molecular Therapeutics, 2002, 4, 359-71.	2.8	22
125	Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nature Biotechnology, 2001, 19, 582-585.	9.4	149
126	Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Therapy, 2001, 8, 589-598.	2.2	40

#	Article	IF	CITATIONS
127	Acute Direct Adenoviral Vector Cytotoxicity and Chronic, but Not Acute, Inflammatory Responses Correlate with Decreased Vector-Mediated Transgene Expression in the Brain. Molecular Therapy, 2001, 3, 36-46.	3.7	171
128	Strong Promoters Are the Key to Highly Efficient, Noninflammatory and Noncytotoxic Adenoviral-Mediated Transgene Delivery into the Brain in Vivo. Molecular Therapy, 2000, 2, 330-338.	3.7	102
129	Long-Term Transgene Expression within the Anterior Pituitary Gland in Situ: Impact on Circulating Hormone Levels, Cellular and Antibody-Mediated Immune Responses*Supported by grants from the BBSRC (UK), The Wellcome trust (UK), The Royal Society, and European Union-Biomed grants, contract no. BMH4-CT98–3277, BMH4-CT98–0297 (to P.R.L. and M.G.C.)0.		12
130	The Brain as a Target for Gene Therapy. , 0, , 153-165.		0
131	Immune Responses to Viral Vectors Injected Systemically or into the CNS. , 0, , 167-179.		0