Lixia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426640/publications.pdf

Version: 2024-02-01

57 papers	2,585 citations	26 h-index	197818 49 g-index
59	59	59	2826
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Attribution of Dry and Wet Climatic Changes over Central Asia. Journal of Climate, 2022, 35, 1399-1421.	3.2	22
2	Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau. Climate Dynamics, 2022, 59, 1939-1952.	3.8	18
3	2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe. Advances in Atmospheric Sciences, 2022, 39, 1598-1607.	4.3	31
4	Observationally constrained projection of Afro-Asian monsoon precipitation. Nature Communications, 2022, 13, 2552.	12.8	23
5	Monsoons Climate Change Assessment. Bulletin of the American Meteorological Society, 2021, 102, E1-E19.	3.3	133
6	Overview of the Global Monsoons Model Intercomparison Project (GMMIP): Progress and Challenges. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 355-365.	0.2	0
7	Clustering circulation in eastern Asia as a tool for exploring possible mechanisms of extreme events and sources of model error. Climate Dynamics, 2021, 56, 4091-4108.	3.8	2
8	The Asian Subtropical Westerly Jet Stream in CRA-40, ERA5, and CFSR Reanalysis Data: Comparative Assessment. Journal of Meteorological Research, 2021, 35, 46-63.	2.4	23
9	Contributions of Local and Remote Atmospheric Moisture Fluxes to East China Precipitation Estimated from CRA-40 Reanalysis. Journal of Meteorological Research, 2021, 35, 32-45.	2.4	11
10	Future changes in Beijing haze events under different anthropogenic aerosol emission scenarios. Atmospheric Chemistry and Physics, 2021, 21, 7499-7514.	4.9	6
11	Human Influence on the Increasing Drought Risk Over Southeast Asian Monsoon Region. Geophysical Research Letters, 2021, 48, e2021GL093777.	4.0	18
12	The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective: Current and Possible Future Prevalence. Advances in Atmospheric Sciences, 2021, 38, 2010-2022.	4.3	8
13	Competing effects of aerosol reductions and circulation changes for future improvements in Beijing haze. Atmospheric Chemistry and Physics, 2021, 21, 15299-15308.	4.9	3
14	Moisture Origins and Transport Processes for the 2020 Yangtze River Valley Record-Breaking Mei-yu Rainfall. Advances in Atmospheric Sciences, 2021, 38, 2125-2136.	4.3	19
15	A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nature Communications, 2021, 12, 6502.	12.8	34
16	Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5°C less global warming. Climate Dynamics, 2020, 54, 543-560.	3.8	51
17	The Flexible Global Oceanâ€Atmosphereâ€Land System Model Gridâ€Point Version 3 (FGOALSâ€g3): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002012.	3.8	129
18	The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Science China Earth Sciences, 2020, 63, 919-933.	5.2	49

#	Article	IF	CITATIONS
19	Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophysical Research Letters, 2020, 47, e2019GL086902.	4.0	115
20	Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters, 2020, 15, 054009.	5.2	124
21	The Late Spring Drought of 2018 in South China. Bulletin of the American Meteorological Society, 2020, 101, S59-S64.	3.3	29
22	Cloud Characteristics and Radiation Forcing in the Global Land Monsoon Region From Multisource Satellite Data Sets. Earth and Space Science, 2020, 7, e2019EA001027.	2.6	11
23	The Recent Decline and Recovery of Indian Summer Monsoon Rainfall: Relative Roles of External Forcing and Internal Variability. Journal of Climate, 2020, 33, 5035-5060.	3.2	65
24	Moisture Sources Associated with Precipitation during Dry and Wet Seasons over Central Asia. Journal of Climate, 2020, 33, 10755-10771.	3.2	30
25	Attribution Of The 2018 October–December Drought Over South Southern Africa. Bulletin of the American Meteorological Society, 2020, 101, S135-S140.	3.3	5
26	Detecting human influence on the temperature changes in Central Asia. Climate Dynamics, 2019, 53, 4553-4568.	3.8	27
27	Future Intensification of the Water Cycle with an Enhanced Annual Cycle over Global Land Monsoon Regions. Journal of Climate, 2019, 32, 5437-5452.	3.2	51
28	Potential Predictability of North China Summer Drought. Journal of Climate, 2019, 32, 7247-7264.	3.2	11
29	Interdecadal Seesaw of Precipitation Variability between North China and the Southwest United States. Journal of Climate, 2019, 32, 2951-2968.	3.2	24
30	Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle–lower reaches of the Yangtze River Basin. Climate Dynamics, 2019, 53, 3109-3129.	3.8	18
31	ENSO Transition from La Niña to El Niño Drives Prolonged Spring–Summer Drought over North China. Journal of Climate, 2018, 31, 3509-3523.	3.2	52
32	Extreme Highâ€Temperature Events Over East Asia in 1.5°C and 2°C Warmer Futures: Analysis of NCAR CESM Lowâ€Warming Experiments. Geophysical Research Letters, 2018, 45, 1541-1550.	4.0	112
33	The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview. Earth and Planetary Physics, 2018, 2, 276-291.	1.1	19
34	Increasing Flash Floods in a Drying Climate over Southwest China. Advances in Atmospheric Sciences, 2018, 35, 1094-1099.	4.3	12
35	Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013. Journal of Climate, 2018, 31, 8005-8021.	3.2	58
36	Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nature Communications, 2018, 9, 3153.	12.8	134

#	Article	IF	CITATIONS
37	Effect of Horizontal Resolution on the Representation of the Global Monsoon Annual Cycle in AGCMs. Advances in Atmospheric Sciences, 2018, 35, 1003-1020.	4.3	11
38	Aerosol forcing of extreme summer drought over North China. Environmental Research Letters, 2017, 12, 034020.	5.2	36
39	A Robustness Analysis of CMIP5 Models over the East Asia-Western North Pacific Domain. Engineering, 2017, 3, 773-778.	6.7	13
40	Wetting and greening Tibetan Plateau in early summer in recent decades. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5808-5822.	3.3	98
41	Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Scientific Reports, 2016, 6, 38506.	3.3	86
42	Added value of high resolution models in simulating global precipitation characteristics. Atmospheric Science Letters, 2016, 17, 646-657.	1.9	32
43	Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. Journal of Climate, 2016, 29, 3989-4019.	3.2	161
44	Metrics for Gauging Model Performance Over the East Asian–Western Pacific Domain. , 2016, , 209-256.		0
45	Decadal change of East Asian summer tropospheric temperature meridional gradient around the early 1990s. Science China Earth Sciences, 2015, 58, 1609-1622.	5.2	9
46	Drought over East Asia: A Review. Journal of Climate, 2015, 28, 3375-3399.	3.2	286
47	Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. Journal of Meteorological Research, 2014, 28, 762-779.	2.4	31
48	Chinese contribution to CMIP5: An overview of five Chinese models' performances. Journal of Meteorological Research, 2014, 28, 481-509.	2.4	35
49	An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2. Advances in Atmospheric Sciences, 2014, 31, 165-178.	4.3	9
50	Two interannual variability modes of the Northwestern Pacific Subtropical Anticyclone in boreal summer. Science China Earth Sciences, 2013, 56, 1254-1265.	5.2	19
51	Observational analysis and numerical simulation of the interannual variability of the boreal winter Hadley circulation over the recent 30 years. Science China Earth Sciences, 2013, 56, 647-661.	5.2	10
52	Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Journal of Meteorological Research, 2013, 27, 50-62.	1.0	4
53	A comparison of tropospheric temperature changes over China revealed by multiple data sets. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4217-4230.	3.3	7
54	The Interannual Variability of Summer Upper-Tropospheric Temperature over East Asia. Journal of Climate, 2012, 25, 6539-6553.	3.2	25

#	Article	IF	CITATIONS
55	An assessment of monsoon precipitation changes during 1901–2001. Climate Dynamics, 2011, 37, 279-296.	3.8	80
56	A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Science Bulletin, 2011, 56, 3028-3041.	1.7	34
57	Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophysical Research Letters, 2008, 35, .	4.0	122