Nigel E Raine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/642654/publications.pdf

Version: 2024-02-01

89 papers

8,107 citations

46918 47 h-index 81 g-index

97 all docs 97
docs citations

97 times ranked 6790 citing authors

#	Article	IF	Citations
1	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	1.9	980
2	Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 2012, 491, 105-108.	13.7	759
3	Speed–accuracy tradeoffs in animal decision making. Trends in Ecology and Evolution, 2009, 24, 400-407.	4.2	473
4	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435.	3.5	368
5	A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140558.	1.2	308
6	The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 803-808.	1.2	272
7	Behavioural syndromes and social insects: personality at multiple levels. Biological Reviews, 2014, 89, 48-67.	4.7	268
8	Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 2015, 528, 548-550.	13.7	249
9	Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology, 2014, 28, 1459-1471.	1.7	220
10	The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus terrestris. PLoS ONE, 2007, 2, e556.	1.1	186
11	Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16, 1463-1469.	3.0	175
12	A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151821.	1.2	161
13	Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Scientific Reports, 2015, 5, 16508.	1.6	141
14	Investigating the impacts of fieldâ€realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. Journal of Applied Ecology, 2016, 53, 1440-1449.	1.9	139
15	Pesticide Exposure Assessment Paradigm for Solitary Bees. Environmental Entomology, 2019, 48, 22-35.	0.7	129
16	Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales. PLoS Biology, 2012, 10, e1001392.	2.6	127
17	Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 2017, 1, 1308-1316.	3.4	123
18	Adaptation, Genetic Drift, Pleiotropy, and History in the Evolution of Bee Foraging Behavior. Advances in the Study of Behavior, 2006, , 305-354.	1.0	114

#	Article	IF	Citations
19	When too much isn't enough: Does current food production meet global nutritional needs?. PLoS ONE, 2018, 13, e0205683.	1.1	110
20	Travel Optimization by Foraging Bumblebees through Readjustments of Traplines after Discovery of New Feeding Locations. American Naturalist, 2010, 176, 744-757.	1.0	108
21	Floral volatiles controlling ant behaviour. Functional Ecology, 2009, 23, 888-900.	1.7	98
22	Pollination ecology of acacias (Fabaceae, Mimosoideae). Australian Systematic Botany, 2003, 16, 103.	0.3	97
23	Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj El	ાં છતી.ને 0.7	/84314 rgBT
24	Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris). Die Naturwissenschaften, 2007, 94, 459-464.	0.6	96
25	A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2009, 63, 1207-1218.	0.6	91
26	Chance and adaptation in the evolution of island bumblebee behaviour. Population Ecology, 2004, 46, 243-251.	0.7	86
27	Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Functional Ecology, 2016, 30, 1132-1139.	1.7	83
28	Blütenstetigkeit und Gedähtnisdynamik bei Hummeln (Hymenoptera: Apidae: Bombus). Entomologia Generalis, 2007, 29, 179-199.	1.1	82
29	Exploring miniature insect brains using micro-CT scanning techniques. Scientific Reports, 2016, 6, 21768.	1.6	80
30	No Trade-Off between Learning Speed and Associative Flexibility in Bumblebees: A Reversal Learning Test with Multiple Colonies. PLoS ONE, 2012, 7, e45096.	1.1	77
31	SPATIAL STRUCTURING AND FLORAL AVOIDANCE BEHAVIOR PREVENT ANT–POLLINATOR CONFLICT IN A MEXICAN ANT-ACACIA. Ecology, 2002, 83, 3086-3096.	1.5	76
32	Tradeâ€off between travel distance and prioritization of highâ€reward sites in traplining bumblebees. Functional Ecology, 2011, 25, 1284-1292.	1.7	74
33	General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170123.	1.2	74
34	Unterschiede im Lernverhalten zwischen Kolonien einer freilebenden Britischen Hummelpopulation (Hymenoptera: Apidae: Bombus terrestris audax). Entomologia Generalis, 2006, 28, 241-256.	1.1	71
35	Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil. Scientific Reports, 2019, 9, 11870.	1.6	69
36	How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Die Naturwissenschaften, 2009, 96, 213-219.	0.6	68

#	Article	IF	CITATIONS
37	Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2008, 62, 1919-1926.	0.6	62
38	Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Scientific Reports, 2021, 11, 4241.	1.6	62
39	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	1.4	61
40	Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nature Ecology and Evolution, 2019, 3, 1373-1375.	3.4	60
41	Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conservation Genetics, 2006, 6, 527-537.	0.8	56
42	Lifetime reproductive success and longevity of queens in an annual social insect. Journal of Evolutionary Biology, 2009, 22, 983-996.	0.8	55
43	Changes in Learning and Foraging Behaviour within Developing Bumble Bee (Bombus terrestris) Colonies. PLoS ONE, 2014, 9, e90556.	1.1	55
44	Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biology Letters, 2012, 8, 13-16.	1.0	54
45	Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. Journal of Applied Ecology, 2014, 51, 460-469.	1.9	54
46	Social Learning: Ants and the Meaning of Teaching. Current Biology, 2006, 16, R323-R325.	1.8	52
47	Workshop on Pesticide Exposure Assessment Paradigm for Non- <i>Apis</i> Bees: Foundation and Summaries. Environmental Entomology, 2019, 48, 4-11.	0.7	52
48	Guards and thieves: antagonistic interactions between two ant species coexisting on the same ant-plant. Ecological Entomology, 2004, 29, 345-352.	1.1	51
49	Non-lethal sampling of honey bee,Apis mellifera, DNA using wing tips. Apidologie, 2004, 35, 311-318.	0.9	50
50	Fast learning in free-foraging bumble bees is negatively correlated with lifetime resource collection. Scientific Reports, 2017, 7, 496.	1.6	43
51	Fungicides and bees: a review of exposure and risk. Environment International, 2022, 165, 107311.	4.8	42
52	Tasteless pesticides affect bees in the field. Nature, 2015, 521, 38-39.	13.7	36
53	Geographic profiling applied to testing models of bumble-bee foraging. Journal of the Royal Society Interface, 2009, 6, 307-319.	1.5	35

 $Vergleich \ der \ Bl\tilde{A}\frac{1}{4} tenstetigkeit \ und \ Sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ Hummel-Arten \ (Hymenoptera: Apidae:) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overglock \ 10 \ Tf \ respectively. The sammelleistung \ von \ drei \ respectively. The sammelleistung \ von \ drei \ respectively. The sammelleistung \ respectively. The sammelleis$

#	Article	IF	CITATIONS
55	Initial recommendations for higherâ€tier risk assessment protocols for bumble bees, <i>Bombus</i> spp. (Hymenoptera: Apidae). Integrated Environmental Assessment and Management, 2016, 12, 222-229.	1.6	32
56	Plant–pollinator interactions in a Mexican Acacia community. Arthropod-Plant Interactions, 2007, 1, 101-117.	0.5	30
57	Unravelling the mechanisms of trapline foraging in bees. Communicative and Integrative Biology, 2013, 6, e22701.	0.6	30
58	Partnerwahl-PrÃÆrenzen bei der kommerziell importierten Hummel-Art Bombus terrestris in Großbritannien (Hymenoptera: Apidae). Entomologia Generalis, 2005, 28, 233-238.	1.1	30
59	Foraging errors play a role in resource exploration by bumble bees (Bombus terrrestris). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 475-484.	0.7	28
60	A comparison of visual and olfactory learning performance in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2014, 68, 1549-1559.	0.6	27
61	Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage. PLoS ONE, 2016, 11, e0150844.	1.1	27
62	The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis) Tj ETQq0 0 0	rgBT/Ove	erlo <u>ck</u> 10 Tf 50
63	An alternative to controversial pesticides still harms bumblebees. Nature, 2018, 561, 40-41.	13.7	22
64	Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Scientific Reports, 2017, 7, 8005.	1.6	21
65	Mengen der Nektarerzeugung bei 75 von Hummeln besuchten Blumenarten in einem deutschen Pflanzenbestand (Hymenoptera: Apidae: Bombus terrestris). Entomologia Generalis, 2007, 30, 191-192.	1.1	21
66	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
67	Acute oral toxicity and risks of four classes of systemic insecticide to the Common Eastern Bumblebee (Bombus impatiens). Chemosphere, 2022, 295, 133771.	4.2	18
68	Effects of aposematic coloration on predation risk in bumblebees? A comparison between differently coloured populations, with consideration of the ultraviolet. Journal of Zoology, 2010, 282, 75-83.	0.8	16
69	A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. Movement Ecology, 2019, 7, 4.	1.3	16
70	Quantifying exposure of bumblebee (Bombus spp.) queens to pesticide residues when hibernating in agricultural soils. Environmental Pollution, 2022, 309, 119722.	3.7	13
71	Hoary Squash Bees (<i>Eucera pruinosa</i> : Hymenoptera: Apidae) Provide Abundant and Reliable Pollination Services to <i>Cucurbita</i> Crops in Ontario (Canada). Environmental Entomology, 2021, 50, 968-981.	0.7	12
72	Pesticide affects social behavior of bees. Science, 2018, 362, 643-644.	6.0	9

#	Article	lF	Citations
73	<i>C</i> -Band Telemetry of Insect Pollinators Using a Miniature Transmitter and a Self-Piloted Drone. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 938-946.	2.9	9
74	Captive-reared migratory monarch butterflies show natural orientation when released in the wild., 2021, 9, coab032.		9
75	Reproductive environment affects learning performance in bumble bees. Behavioral Ecology and Sociobiology, 2016, 70, 2053-2060.	0.6	8
76	Odour Learning Bees Have Longer Foraging Careers Than Non-learners in a Natural Environment. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
77	Cognitive Ecology: Environmental Dependence of the Fitness Costs of Learning. Current Biology, 2009, 19, R486-R488.	1.8	7
78	No evidence for an evolutionary trade-off between learning and immunity in a social insect. Biology Letters, 2009, 5, 55-57.	1.0	7
79	Potential application of the bumblebee foraging recruitment pheromone for commercial greenhouse pollination. Apidologie, 2009, 40, 608-616.	0.9	5
80	Effects of early-life exposure to sublethal levels of a common neonicotinoid insecticide on the orientation and migration of monarch butterflies (<i>Danaus plexippus</i>). Journal of Experimental Biology, 2021, 224, .	0.8	5
81	Spatial Structuring and Floral Avoidance Behavior Prevent Ant-Pollinator Conflict in a Mexican Ant-Acacia. Ecology, 2002, 83, 3086.	1.5	3
82	Bee positive: the importance of electroreception in pollinator cognitive ecology. Frontiers in Psychology, 2013, 4, 445.	1.1	2
83	Phenological synchrony between the hoary squash bee (Eucera pruinosa) and cultivated acorn squash (Cucurbita pepo) flowering is imperfect at a northern site. Current Research in Insect Science, 2021, 1, 100022.	0.8	1
84	Bumblebees gain fitness through learning. Nature Precedings, 2007, , .	0.1	0
85	Bee careful. New Scientist, 2013, 218, 31.	0.0	0
86	Bumblebee colour patterns and predation risk: a reply to Owen (2014). Journal of Zoology, 2014, 292, 133-135.	0.8	0
87	æμ,逿€§è¾²è−¬ã®æ¹æ·±ã¸å•題. Nature Digest, 2018, 15, 31-33.	0.0	0
88	Measuring the Adaptiveness of Social Insect Foraging Strategies. Contemporary Topics in Entomology Series, 2009, , 9-28.	0.3	0
89	Pesticide impacts on bees: From individual behaviour to pollination services. , 2016, , .		0