Kranthi K Kolli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches. Journal of Cardiovascular Computed Tomography, 2020, 14, 168-176.	0.7	23
2	Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry. Journal of the American Heart Association, 2020, 9, e013958.	1.6	53
3	Advanced Manufacturing of Patientâ€&pecific Occluders for the Left Atrial Appendage with Minimally Invasive Delivery. Advanced Engineering Materials, 2020, 22, 1901074.	1.6	2
4	Abstract 17031: Noninvasive CT-Based Hemodynamic Assessment Using 3D Printing and Virtual Functional Assessment Index. Circulation, 2020, 142, .	1.6	1
5	Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal, 2019, 40, 1975-1986.	1.0	327
6	Determinants of Inâ€Hospital Mortality After Percutaneous Coronary Intervention: A Machine Learning Approach. Journal of the American Heart Association, 2019, 8, e011160.	1.6	52
7	Machine learning algorithm to predict coronary artery calcification in asymptomatic healthy population. , 2019, , .		1
8	Improved functional asssessment of ischemic severity using 3D printed models. , 2019, , .		0
9	Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. Journal of Cardiovascular Computed Tomography, 2018, 12, 204-209.	0.7	137
10	Machine learning in cardiac CT: Basic concepts and contemporary data. Journal of Cardiovascular Computed Tomography, 2018, 12, 192-201.	0.7	86
11	Evaluation of lesion flow coefficient for the detection of coronary artery disease in patient groups from two academic medical centers. Cardiovascular Revascularization Medicine, 2018, 19, 348-354.	0.3	4
12	Image-Based Computational Fluid Dynamic Analysis for Surgical Planning of Sequential Grafts in Coronary Artery Bypass Grafting. , 2018, 2018, 4893-4896.		1
13	Toward Development of Inflatable Stents with Application in Endovascular Treatments. Advanced Functional Materials, 2018, 28, 1804147.	7.8	9
14	A Novel Deep Learning Approach for Automated Diagnosis of Acute Ischemic Infarction on Computed Tomography. JACC: Cardiovascular Imaging, 2018, 11, 1723-1725.	2.3	16
15	Assessing Perfusion Using 3D Bioprinting. , 2018, , 211-226.		0
16	Abstract TP58: A Novel Deep Learning Approach for Automated Diagnosis of Cerebral Infarction on Computed Tomography. Stroke, 2018, 49, .	1.0	0
17	CRT-200.29 Evaluation Of Lesion Flow Coefficient For The Detection Of Coronary Artery Disease In Patient Groups From Two Academic Medical Centers. JACC: Cardiovascular Interventions, 2017, 10, S38.	1.1	0
18	Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study, Journal of the American Heart Association, 2016, 5, ,	1.6	19

Kranthi K Kolli

#	Article	IF	CITATIONS
19	Relationship Between Endothelial Wall Shear Stress and Highâ€Risk Atherosclerotic Plaque Characteristics for Identification of Coronary Lesions That Cause Ischemia: A Direct Comparison With Fractional Flow Reserve. Journal of the American Heart Association, 2016, 5, .	1.6	47
20	Diagnostic cutoff for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: A Patient‣evel Analysis. Catheterization and Cardiovascular Interventions, 2016, 87, 273-282.	0.7	13
21	Benefit of ECG-gated rest and stress N-13 cardiac PET imaging for quantification of LVEF in ischemic patients. Nuclear Medicine Communications, 2015, 36, 986-998.	0.5	3
22	Abstract 13069: Prescribed Flow Reserve as a Novel Method for Diagnosis of Coronary Artery Ischemia Under Physiologically-Realistic Conditions. Circulation, 2015, 132, .	1.6	0
23	Lesion flow coefficient: a combined anatomical and functional parameter for detection of coronary artery diseasea clinical study. Journal of Invasive Cardiology, 2015, 27, 54-64.	0.4	6
24	Functional diagnosis of coronary stenoses using pressure drop coefficient: A pilot study in humans. Catheterization and Cardiovascular Interventions, 2014, 83, 377-385.	0.7	15
25	Effect of myocardial contractility on hemodynamic end points under concomitant microvascular disease in a porcine model. Heart and Vessels, 2014, 29, 97-109.	0.5	9
26	Hyperemia-Free Delineation of Epicardial and Microvascular Impairments Using a Basal Index. Annals of Biomedical Engineering, 2014, 42, 1681-1690.	1.3	4
27	Benefit of cardiac N-13 PET CFR for combined anatomical and functional diagnosis of ischemic coronary artery disease: a pilot study. Annals of Nuclear Medicine, 2014, 28, 746-760.	1.2	10
28	Diagnostic performance of pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve. Journal of Invasive Cardiology, 2014, 26, 188-95.	0.4	7
29	Optimization of balloon obstruction for simulating equivalent pressure drop in physiological stenoses. Biorheology, 2013, 50, 257-268.	1.2	1
30	Improved Assessment of Coronary Flow Impairment Using N-13 Ammonia Positron Emission Tomography. , 2013, , .		0
31	Optimization of Balloon Obstruction for Simulating Equivalent Pressure Drop in In-Vivo Conditions. , 2013, , .		Ο
32	Effect of heart rate on hemodynamic endpoints under concomitant microvascular disease in a porcine model. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1563-H1573.	1.5	13
33	Distinguishing Epicardial and Microvascular Disease Using Combined Functional and Anatomical Endpoints in a Porcine Model. , 2012, , .		0
34	Functional and Anatomical Diagnosis of Coronary Artery Stenoses: A Retrospective Study in Humans. , 2012, , .		0
35	Comparison Between Actual Stenosis and Internal Balloon Obstruction for Equivalent Pressure in a Porcine Model. , 2012, , .		0
36	Effect of changes in contractility on pressure drop coefficient and fractional flow reserve in a porcine model. Journal of Invasive Cardiology, 2012, 24, 6-12.	0.4	16

Kranthi K Kolli

#	Article	IF	CITATIONS
37	Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach. BioMedical Engineering OnLine, 2011, 10, 51.	1.3	14
38	Influence of heart rate on fractional flow reserve, pressure drop coefficient, and lesion flow coefficient for epicardial coronary stenosis in a porcine model. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H382-H387.	1.5	27
39	Influence of Heart Rate and Epicardial Stenosis Severity on Cardiac Contractility Under Concomitant Microvascular Disease in a Porcine Model. , 2011, , .		0
40	Functional Diagnosis of Coronary Artery Stenoses Using Pressure Drop Coefficient: A Pilot Study in Humans. , 2011, , .		0
41	Influence of Heart Rate and Contractility on Coronary Diagnostic Parameters With Normal Microvasculature in Porcine Model. , 2010, , .		0
42	Influence of Heart Rate and Area Stenosis on Coronary Diagnostic Parameters in a Porcine Model. , 2009, , .		0
43	Improved Functional Assessment of Ischemic Severity Using 3D Printed Models. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	Ο