
Michael J Mcphaden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	18.8	1,572
2	ENSO as an Integrating Concept in Earth Science. Science, 2006, 314, 1740-1745.	12.6	1,315
3	Genesis and Evolution of the 1997-98 El Nino. Science, 1999, 283, 950-954.	12.6	1,141
4	Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 2014, 4, 222-227.	18.8	1,115
5	The Tropical Ocean-Clobal Atmosphere observing system: A decade of progress. Journal of Geophysical Research, 1998, 103, 14169-14240.	3.3	884
6	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
7	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
8	Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2012, 2, 161-166.	18.8	564
9	Biological and Chemical Response of the Equatorial Pacific Ocean to the 1997-98 El Niño. Science, 1999, 286, 2126-2131.	12.6	553
10	Increasing intensity of El Niño in the centralâ€equatorial Pacific. Geophysical Research Letters, 2010, 37,	4.0	543
11	Observations of Warm Water Volume Changes in the Equatorial Pacific and Their Relationship to El Niño and La Niña. Journal of Climate, 2000, 13, 3551-3559.	3.2	516
12	RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction [*] . Bulletin of the American Meteorological Society, 2009, 90, 459-480.	3.3	489
13	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	18.8	479
14	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 2002, 415, 603-608.	27.8	455
15	Observations of Coupling between Surface Wind Stress and Sea Surface Temperature in the Eastern Tropical Pacific. Journal of Climate, 2001, 14, 1479-1498.	3.2	425
16	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
17	Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 2018, 564, 201-206.	27.8	394
18	Forcing of intraseasonal Kelvin waves in the equatorial Pacific. Journal of Geophysical Research, 1995, 100, 10613.	3.3	370

#	Article	IF	CITATIONS
19	Mechanism of the Zonal Displacements of the Pacific Warm Pool: Implications for ENSO. Science, 1996, 274, 1486-1489.	12.6	350
20	The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Reviews of Geophysics, 2017, 55, 1079-1129.	23.0	337
21	El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 2011, 38, .	4.0	334
22	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
23	La Niña forces unprecedented Leeuwin Current warming in 2011. Scientific Reports, 2013, 3, 1277.	3.3	326
24	Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, 2020, 1, 215-231.	29.7	318
25	Evolution of the 2002/03 El Niño*. Bulletin of the American Meteorological Society, 2004, 85, 677-696.	3.3	311
26	THE PIRATA PROGRAM. Bulletin of the American Meteorological Society, 2008, 89, 1111-1126.	3.3	309
27	TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Climate Dynamics, 2012, 38, 1521-1543.	3.8	291
28	The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Weekly to Monthly Variability. Journal of Climate, 1989, 2, 1500-1506.	3.2	233
29	Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature, 2006, 442, 1025-1028.	27.8	231
30	Equatorial waves and the 1997-98 El Niño. Geophysical Research Letters, 1999, 26, 2961-2964.	4.0	225
31	Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 2009, 33, 565-589.	3.8	221
32	A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophysical Research Letters, 2012, 39, .	4.0	217
33	Indian Ocean Decadal Variability: A Review. Bulletin of the American Meteorological Society, 2014, 95, 1679-1703.	3.3	210
34	TOGA-TAO and the 1991–93 El Niño Southern Oscillation Event. Oceanography, 1993, 6, 36-44.	1.0	210
35	Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophysical Research Letters, 2003, 30, .	4.0	204
36	A Model Study of Oceanic Mechanisms Affecting Equatorial Pacific Sea Surface Temperature during the 1997–98 El Niño. Journal of Physical Oceanography, 2001, 31, 1649-1675.	1.7	202

#	Article	IF	CITATIONS
37	Interior Pycnocline Flow from the Subtropical to the Equatorial Pacific Ocean*. Journal of Physical Oceanography, 1999, 29, 3073-3089.	1.7	198
38	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	29.7	197
39	Playing hide and seek with El Niño. Nature Climate Change, 2015, 5, 791-795.	18.8	189
40	A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bulletin of the American Meteorological Society, 1998, 79, 2019-2031.	3.3	188
41	Oceanic Equatorial Waves and the 1991–93 El Niño. Journal of Climate, 1995, 8, 1757-1774.	3.2	181
42	Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2443-2469.	1.4	176
43	The Tropical Atmosphere Ocean Array Is Completed. Bulletin of the American Meteorological Society, 1995, 76, 739-744.	3.3	175
44	Continued increase of extreme ElÂNiño frequency long after 1.5 °C warming stabilization. Nature Climate Change, 2017, 7, 568-572.	18.8	174
45	Variability of surface layer hydrography in the tropical Pacific Ocean. Journal of Geophysical Research, 1997, 102, 23063-23078.	3.3	168
46	Pacific Ocean circulation rebounds. Geophysical Research Letters, 2004, 31, .	4.0	165
47	How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophysical Research Letters, 2016, 43, 6503-6510.	4.0	162
48	More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 2012, 488, 365-369.	27.8	160
49	Decadal variability of the air-sea CO2fluxes in the equatorial Pacific Ocean. Journal of Geophysical Research, 2006, 111, .	3.3	159
50	The Relationship between Sea Surface Temperature and Latent Heat Flux in the Equatorial Pacific. Journal of Climate, 1995, 8, 589-605.	3.2	158
51	Ocean currents evident in satellite wind data. Geophysical Research Letters, 2001, 28, 2469-2472.	4.0	158
52	The Surface-Layer Heat Balance in the Equatorial Pacific Ocean. Part I: Mean Seasonal Cycle*. Journal of Physical Oceanography, 1999, 29, 1812-1831.	1.7	155
53	Decadal phase change in largeâ€scale sea level and winds in the Indoâ€Pacific region at the end of the 20th century. Geophysical Research Letters, 2008, 35, .	4.0	155
54	Equatorial Pacific Ocean Horizontal Velocity, Divergence, and Upwelling*. Journal of Physical Oceanography, 2001, 31, 839-849.	1.7	151

#	Article	IF	CITATIONS
55	Seasonal variability in the surface currents of the equatorial Pacific. Journal of Geophysical Research, 1994, 99, 20323.	3.3	143
56	The 1991–1993 El Niño in the central Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 295-333.	1.4	142
57	Seasonal mixed layer heat budget of the tropical Atlantic Ocean. Journal of Geophysical Research, 2003, 108, .	3.3	139
58	Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophysical Research Letters, 2009, 36, .	4.0	137
59	The upper ocean heat balance in the western equatorial Pacific warm pool during September-December 1992. Journal of Geophysical Research, 1997, 102, 8533-8553.	3.3	134
60	Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778.	12.8	132
61	Dynamics of Seasonal and Intraseasonal Variability in the Eastern Equatorial Pacific. Journal of Physical Oceanography, 1988, 18, 1713-1732.	1.7	131
62	The Surface-Layer Heat Balance in the Equatorial Pacific Ocean. Part II: Interannual Variability*. Journal of Physical Oceanography, 2000, 30, 2989-3008.	1.7	130
63	El Nin-Southern Oscillation Displacements of the Western Equatorial Pacific Warm Pool. Science, 1990, 250, 1385-1388.	12.6	128
64	Seasonal Variability in the Equatorial Pacific. Journal of Physical Oceanography, 1999, 29, 925-947.	1.7	127
65	Oceanâ€Atmosphere Interactions During Cyclone Nargis. Eos, 2009, 90, 53-54.	0.1	122
66	Large scale dynamics and MJO forcing of ENSO variability. Geophysical Research Letters, 2006, 33, .	4.0	121
67	The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. Journal of Geophysical Research, 1988, 93, 10589-10603.	3.3	119
68	Cirene: Air—Sea Interactions in the Seychelles—Chagos Thermocline Ridge Region. Bulletin of the American Meteorological Society, 2009, 90, 45-62.	3.3	116
69	Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 2013, 504, 126-130.	27.8	116
70	Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 2019, 575, 647-651.	27.8	114
71	The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. Journal of Geophysical Research, 1992, 97, 14289-14303.	3.3	110
72	Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophysical Research Letters, 2010, 37, .	4.0	109

#	Article	IF	CITATIONS
73	Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 2013, 500, 64-67.	27.8	104
74	Time and space scales for sea surface salinity in the tropical oceans. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 787-813.	1.4	103
75	Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research, 2011, 116, .	3.3	103
76	TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Climate Dynamics, 2013, 40, 2049-2071.	3.8	102
77	The NCEP GODAS Ocean Analysis of the Tropical Pacific Mixed Layer Heat Budget on Seasonal to Interannual Time Scales. Journal of Climate, 2010, 23, 4901-4925.	3.2	101
78	Assessing the Twenty-First-Century Shift in ENSO Variability in Terms of the Bjerknes Stability Index*. Journal of Climate, 2014, 27, 2577-2587.	3.2	101
79	The impact of the AMO on multidecadal ENSO variability. Geophysical Research Letters, 2017, 44, 3877-3886.	4.0	101
80	Observational Evidence for Flow between the Subtropical and Tropical Atlantic: The Atlantic Subtropical Cells*. Journal of Physical Oceanography, 2003, 33, 1783-1797.	1.7	100
81	The child prodigy of 1997-98. Nature, 1999, 398, 559-561.	27.8	98
82	Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package. Bulletin of the American Meteorological Society, 2021, 102, E193-E217.	3.3	93
83	Intraseasonal Surface Cooling in the Equatorial Western Pacific*. Journal of Climate, 2000, 13, 2261-2276.	3.2	92
84	Decadal variations and trends in tropical Pacific sea surface salinity since 1970. Journal of Geophysical Research, 2007, 112, .	3.3	92
85	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
86	Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modelling, 2006, 15, 250-273.	2.4	91
87	Seasonal-to-Interannual Time-Scale Dynamics of the Equatorial Undercurrent in the Indian Ocean. Journal of Physical Oceanography, 2015, 45, 1532-1553.	1.7	91
88	Strong Indian Ocean sea surface temperature signals associated with the Maddenâ€Julian Oscillation in late 2007 and early 2008. Geophysical Research Letters, 2008, 35, .	4.0	90
89	Wyrtki Jet dynamics: Seasonal variability. Journal of Geophysical Research, 2010, 115, .	3.3	90
90	Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophysical Research Letters, 2013, 40, 749-754.	4.0	90

#	Article	IF	CITATIONS
91	On the Inconsistent Relationship between Pacific and Atlantic Niños*. Journal of Climate, 2012, 25, 4294-4303.	3.2	87
92	Variability of the sea surface temperature in the eastern equatorial Pacific during 1986–1988. Journal of Geophysical Research, 1991, 96, 10553-10566.	3.3	86
93	Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast?. Geophysical Research Letters, 2014, 41, 1012-1018.	4.0	86
94	Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. Journal of Geophysical Research: Oceans, 2013, 118, 2426-2437.	2.6	85
95	Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992-2000. Journal of Geophysical Research, 2002, 107, SRF 3-1-SRF 3-17.	3.3	84
96	Variability in the Western Equatorial Pacific Ocean during the 1986–87 El Niño/Southern Oscillation Event. Journal of Physical Oceanography, 1990, 20, 190-208.	1.7	83
97	Barrier layer formation during westerly wind bursts. Journal of Geophysical Research, 2002, 107, SRF 21-1-SRF 21-12.	3.3	83
98	Extreme Noise–Extreme El Niño: How State-Dependent Noise Forcing Creates El Niño–La Niña Asymmetry. Journal of Climate, 2016, 29, 5483-5499.	3.2	83
99	Impact of Barrier Layer Thickness on SST in the Central Tropical North Atlantic*. Journal of Climate, 2009, 22, 285-299.	3.2	82
100	A TOGA Retrospective. Oceanography, 2010, 23, 86-103.	1.0	82
101	Dynamics of zonal current variations associated with the Indian Ocean dipole. Journal of Geophysical Research, 2010, 115, .	3.3	82
102	Upper ocean salinity balance in the western equatorial Pacific. Journal of Geophysical Research, 1998, 103, 27567-27587.	3.3	81
103	Interannual Variability in Warm Water Volume Transports in the Equatorial Pacific during 1993–99*. Journal of Physical Oceanography, 2001, 31, 1324-1345.	1.7	81
104	Interaction between the Atlantic meridional and Ni $ ilde{A}\pm$ o modes. Geophysical Research Letters, 2010, 37, .	4.0	81
105	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	80
106	Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science Advances, 2020, 6, eaax7727.	10.3	80
107	Evolution of the 2006–2007 El Niño: the role of intraseasonal to interannual time scale dynamics. Advances in Geosciences, 0, 14, 219-230.	12.0	80
108	Biological-physical coupling in the Central Equatorial Pacific during the onset of the 1997-98 El Niño. Geophysical Research Letters, 1998, 25, 3543-3546.	4.0	79

#	Article	IF	CITATIONS
109	Upper equatorial Pacific Ocean current and salinity variability during the 1996-1998 El Niño-La Niña cycle. Journal of Geophysical Research, 2000, 105, 1037-1053.	3.3	79
110	Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophysical Research Letters, 2006, 33, .	4.0	79
111	Strengthened Indonesian Throughflow Drives Decadal Warming in the Southern Indian Ocean. Geophysical Research Letters, 2018, 45, 6167-6175.	4.0	79
112	Impact of Saharan Dust on Tropical North Atlantic SST*. Journal of Climate, 2008, 21, 5048-5060.	3.2	74
113	Seasonal mixed layer salinity balance of the tropical North Atlantic Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	73
114	MISMO FIELD EXPERIMENT IN THE EQUATORIAL INDIAN OCEAN. Bulletin of the American Meteorological Society, 2008, 89, 1889-1904.	3.3	73
115	Biological response to the 1997–98 and 2009–10 El Niño events in the equatorial Pacific Ocean. Geophysical Research Letters, 2012, 39, .	4.0	73
116	On the variability of winds, sea surface temperature, and surface layer heat content in the western equatorial Pacific. Journal of Geophysical Research, 1991, 96, 3331-3342.	3.3	72
117	Mixed Layer Temperature Balance on Intraseasonal Timescales in the Equatorial Pacific Ocean*. Journal of Climate, 2002, 15, 2632-2647.	3.2	71
118	The Interdecadal Shift of ENSO Properties in 1999/2000: A Review. Journal of Climate, 2020, 33, 4441-4462.	3.2	71
119	Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dynamics, 2014, 42, 1569-1586.	3.8	70
120	An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. Journal of Geophysical Research, 2006, 111, .	3.3	69
121	Volume transports of the <scp>W</scp> yrtki jets and their relationship to the <scp>I</scp> ndian <scp>O</scp> cean <scp>D</scp> ipole. Journal of Geophysical Research: Oceans, 2015, 120, 5302-5317.	2.6	69
122	The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophysical Research Letters, 2015, 42, 5034-5041.	4.0	69
123	Autonomous seawater <i>p</i> CO ₂ and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data, 2019, 11, 421-439.	9.9	69
124	Remotely Sensed Biological Production in the Equatorial Pacific. Science, 2001, 293, 471-474.	12.6	67
125	Surface Layer Temperature Balance in the Equatorial Pacific during the 1997–98 El Niño and 1998–99 La Niña*. Journal of Climate, 2001, 14, 3393-3407.	3.2	67
126	Natural variability and anthropogenic change in equatorial Pacific surface ocean <i>p</i> CO ₂ and pH. Global Biogeochemical Cycles, 2014, 28, 131-145.	4.9	64

#	Article	IF	CITATIONS
127	Why Has the Relationship between Indian and Pacific Ocean Decadal Variability Changed in Recent Decades?. Journal of Climate, 2017, 30, 1971-1983.	3.2	64
128	Anatomy and Decadal Evolution of the Pacific Subtropical–Tropical Cells (STCs)*. Journal of Climate, 2005, 18, 3739-3758.	3.2	63
129	Ecological Impacts of the 2015/16 El Niño in the Central Equatorial Pacific. Bulletin of the American Meteorological Society, 2018, 99, S21-S26.	3.3	63
130	PIRATA: A Sustained Observing System for Tropical Atlantic Climate Research and Forecasting. Earth and Space Science, 2019, 6, 577-616.	2.6	63
131	Butterfly effect and a self-modulating El Niño response to global warming. Nature, 2020, 585, 68-73.	27.8	63
132	Surface layer variations observed in multiyear time series measurements from the western equatorial Pacific. Journal of Geophysical Research, 1994, 99, 963.	3.3	61
133	Monthly period oscillations in the Pacific North Equatorial Countercurrent. Journal of Geophysical Research, 1996, 101, 6337-6359.	3.3	61
134	Ocean Preconditioning of Cyclone Nargis in the Bay of Bengal: Interaction between Rossby Waves, Surface Fresh Waters, and Sea Surface Temperatures*. Journal of Physical Oceanography, 2011, 41, 1741-1755.	1.7	61
135	Tropical stormâ€induced nearâ€inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing. Journal of Geophysical Research: Oceans, 2013, 118, 358-380.	2.6	61
136	Enhancement of Tropical Ocean Evaporation and Sensible Heat Flux by Atmospheric Mesoscale Systems. Journal of Climate, 1996, 9, 2307-2325.	3.2	60
137	Recent climatic trends in the tropical Atlantic. Climate Dynamics, 2014, 43, 3071-3089.	3.8	60
138	Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 2016, 13, 5065-5083.	3.3	60
139	Wind, Waves, and Fronts: Frictional Effects in a Generalized Ekman Model. Journal of Physical Oceanography, 2016, 46, 371-394.	1.7	59
140	Variability in the eastern equatorial Pacific Ocean during 1986–1988. Journal of Geophysical Research, 1990, 95, 13195-13208.	3.3	58
141	Seasonal salt budget of the northwestern tropical Atlantic Ocean along 38°W. Journal of Geophysical Research, 2004, 109, .	3.3	58
142	A Strong Atlantic Meridional Mode Event in 2009: The Role of Mixed Layer Dynamics*. Journal of Climate, 2012, 25, 363-380.	3.2	58
143	Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophysical Research Letters, 2008, 35, .	4.0	57
144	Tropical Pacific upper ocean heat content variations and Indian summer monsoon rainfall. Geophysical Research Letters, 2004, 31, .	4.0	56

#	Article	IF	CITATIONS
145	Seasonal Mixed Layer Heat Balance of the Southwestern Tropical Indian Ocean*. Journal of Climate, 2010, 23, 947-965.	3.2	56
146	Impact of Indian Ocean Dipole and El Niño/Southern Oscillation windâ€forcing on the Wyrtki jets. Journal of Geophysical Research, 2012, 117, .	3.3	56
147	Mixed Layer Temperature Budget for the Northward Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal. Journal of Geophysical Research: Oceans, 2017, 122, 8841-8854.	2.6	54
148	What is the mean seasonal cycle of surface heat flux in the equatorial Pacific?. Journal of Geophysical Research, 2001, 106, 837-857.	3.3	53
149	ATLAS Self-Siphoning Rain Gauge Error Estimates*. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1989-2002.	1.3	53
150	Dynamics of wind-forced intraseasonal zonal current variations in the equatorial Indian Ocean. Journal of Geophysical Research, 2011, 116, .	3.3	52
151	A Comparative Stability Analysis of Atlantic and Pacific Niño Modes*. Journal of Climate, 2013, 26, 5965-5980.	3.2	52
152	Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. Journal of Geophysical Research: Oceans, 2014, 119, 7969-7986.	2.6	52
153	Seasonal cycles of surface layer salinity in the Pacific Ocean. Ocean Science, 2010, 6, 775-787.	3.4	51
154	Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. Journal of Geophysical Research, 2011, 116, .	3.3	51
155	Variability in equatorial Pacific sea surface topography during the verification phase of the TOPEX/POSEIDON mission. Journal of Geophysical Research, 1994, 99, 24725.	3.3	50
156	Characteristics of the seasonal cycle of surface layer salinity in the global ocean. Ocean Science, 2012, 8, 915-929.	3.4	50
157	Variability in the South Atlantic Anticyclone and the Atlantic Niño Mode*. Journal of Climate, 2014, 27, 8135-8150.	3.2	50
158	A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific Knowledge and Societal Needs. Frontiers in Marine Science, 2019, 6, .	2.5	49
159	The Interaction of Equatorial Kelvin Waves with Realistically Sheared Zonal Currents. Journal of Physical Oceanography, 1986, 16, 1499-1515.	1.7	48
160	Internal Waves and Turbulence in the Upper Central Equatorial Pacific: Lagrangian and Eulerian Observations. Journal of Physical Oceanography, 2002, 32, 2619-2639.	1.7	48
161	Seasonal and interannual CO2fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2-SST relationships. Journal of Geophysical Research, 2003, 108, .	3.3	48
162	Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using Pilot Research Moored Array in the Tropical Atlantic (PIRATA) mooring data. Journal of Geophysical Research, 2005, 110, .	3.3	48

#	Article	IF	CITATIONS
163	A Road Map to IndOOS-2: Better Observations of the Rapidly Warming Indian Ocean. Bulletin of the American Meteorological Society, 2020, 101, E1891-E1913.	3.3	48
164	The Curious Case of the EL Niño That Never Happened: A Perspective from 40 Years of Progress in Climate Research and Forecasting. Bulletin of the American Meteorological Society, 2015, 96, 1647-1665.	3.3	47
165	The effect of tropical instability waves on CO2species distributions along the equator in the eastern equatorial Pacific during the 1992 ENSO event. Geophysical Research Letters, 1994, 21, 277-280.	4.0	46
166	Strong Intraseasonal Variability of Meridional Currents near 5°N in the Eastern Indian Ocean: Characteristics and Causes. Journal of Physical Oceanography, 2017, 47, 979-998.	1.7	46
167	Enhanced oceanic and atmospheric monitoring underway in eastern Pacific. Eos, 2002, 83, 205.	0.1	45
168	Interhemispheric SST Gradient Trends in the Indian Ocean prior to and during the Recent Global Warming Hiatusa. Journal of Climate, 2016, 29, 9077-9095.	3.2	45
169	Air–Sea Heat Exchange along the Northern Sea Surface Temperature Front in the Eastern Tropical Pacific. Journal of Climate, 2002, 15, 3361-3378.	3.2	45
170	Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array. Journal of Climate, 1996, 9, 2999-3024.	3.2	44
171	Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: The importance of zonal advection and vertical mixing. Geophysical Research Letters, 2013, 40, 2737-2741.	4.0	44
172	Symmetry of the Atlantic Niñ0 mode. Geophysical Research Letters, 2017, 44, 965-973.	4.0	44
173	On the variety of coastal El Ni $ ilde{A}$ \pm o events. Climate Dynamics, 2019, 52, 7537-7552.	3.8	44
174	Simulation of ENSO Related Surface Wind Anomalies with an Atmospheric GCM Forced by Observed SST. Journal of Climate, 1990, 3, 509-521.	3.2	43
175	Intraseasonal Variations in the Upper Equatorial Pacific Ocean prior to and during the 1997–98 El Niño. Journal of Physical Oceanography, 2002, 32, 1133-1149.	1.7	43
176	Abrupt equatorial waveâ€induced cooling of the Atlantic cold tongue in 2009. Geophysical Research Letters, 2010, 37, .	4.0	43
177	On the Dynamics of Equatorial Subsurface Countercurrents. Journal of Physical Oceanography, 1984, 14, 1216-1225.	1.7	42
178	A meeting place of great ocean currents: shipboard observations of a convergent front at 2°N in the Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1827-1849.	1.4	42
179	The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophysical Research Letters, 2008, 35, .	4.0	42
180	Changes in Tropical Pacific Thermocline Depth and Their Relationship to ENSO after 1999. Journal of Climate, 2014, 27, 7230-7249.	3.2	42

#	Article	IF	CITATIONS
181	Generalized Inversion of Tropical Atmosphere–Ocean Data and a Coupled Model of the Tropical Pacific. Journal of Climate, 1998, 11, 1768-1792.	3.2	41
182	The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environmental Research Letters, 2017, 12, 034011.	5.2	41
183	Effects of westerly wind bursts upon the western equatorial Pacific Ocean, February–April 1991. Journal of Geophysical Research, 1993, 98, 16379-16385.	3.3	40
184	Wind Stress Variations and Interannual Sea Surface Temperature Anomalies in the Eastern Equatorial Pacific. Journal of Climate, 2006, 19, 226-241.	3.2	40
185	Ocean Processes Affecting the Twenty-First-Century Shift in ENSO SST Variability. Journal of Climate, 2016, 29, 6861-6879.	3.2	40
186	Use of the geostrophic approximation to estimate timeâ€varying zonal currents at the equator. Journal of Geophysical Research, 1989, 94, 3228-3236.	3.3	39
187	Convection-Evaporation Feedback in the Equatorial pacific. Journal of Climate, 1995, 8, 3040-3051.	3.2	39
188	The 30â \in "70 day oscillations in the tropical Atlantic. Geophysical Research Letters, 2004, 31, .	4.0	39
189	Open-ocean validation of TOPEX/POSEIDON sea level in the western equatorial Pacific. Journal of Geophysical Research, 1995, 100, 25109.	3.3	38
190	Vertical Velocities and Transports in the Equatorial Pacific during 1993–99*. Journal of Physical Oceanography, 2001, 31, 3230-3248.	1.7	38
191	The Role of Oceanic Heat Advection in the Evolution of Tropical North and South Atlantic SST Anomalies*. Journal of Climate, 2006, 19, 6122-6138.	3.2	38
192	Unprecedented Response of Indonesian Throughflow to Anomalous Indoâ€Pacific Climatic Forcing in 2016. Journal of Geophysical Research: Oceans, 2019, 124, 3737-3754.	2.6	37
193	Multiple Time- and Space-Scale Comparisons of ATLAS Buoy Rain Gauge Measurements with TRMM Satellite Precipitation Measurements*. Journal of Applied Meteorology and Climatology, 2003, 42, 1045-1059.	1.7	37
194	Validation of the geostrophic method for estimating zonal currents at the equator from Geosat altimeter data. Journal of Geophysical Research, 1990, 95, 3015-3024.	3.3	36
195	Variability in the western equatorial Pacific Ocean during Japanese Pacific climate study cruises in 1989 and 1990. Journal of Geophysical Research, 1993, 98, 4747-4759.	3.3	36
196	The dynamics of windâ€driven intraseasonal variability in the equatorial Indian Ocean. Journal of Geophysical Research, 2012, 117, .	3.3	36
197	AMO Forcing of Multidecadal Pacific ITCZ Variability. Journal of Climate, 2018, 31, 5749-5764.	3.2	36
198	A Dynamical Interpretation of the Tritium Maximum in the Central Equatorial Pacific. Journal of Physical Oceanography, 1988, 18, 1454-1457.	1.7	35

#	Article	IF	CITATIONS
199	Influence of Westerly Wind Events stochasticity on El Niño amplitude: the case of 2014 vs. 2015. Climate Dynamics, 2019, 52, 7435-7454.	3.8	35
200	Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Climate Dynamics, 2020, 55, 789-811.	3.8	35
201	Continuously Stratified Models of the Steady-State Equatorial Ocean. Journal of Physical Oceanography, 1981, 11, 337-354.	1.7	34
202	High-Frequency Internal Waves at 0°, 140°W and Their Possible Relationship to Deep-Cycle Turbulence. Journal of Physical Oceanography, 1996, 26, 581-600.	1.7	34
203	Diurnal cycle of rainfall and surface salinity in the Western Pacific Warm Pool. Geophysical Research Letters, 1999, 26, 3465-3468.	4.0	34
204	Implications of changing El Niño patterns for biological dynamics in the equatorial Pacific Ocean. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	34
205	Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23°W). Journal of Geophysical Research: Oceans, 2015, 120, 563-581.	2.6	34
206	Oceanic heat content variability in the tropical Pacific during the 1982–1983 El Niño. Journal of Geophysical Research, 1990, 95, 22089-22101.	3.3	33
207	Dynamical Analysis of Seasonal and Interannual Variability in the Equatorial Pacific*. Journal of Physical Oceanography, 1999, 29, 2350-2369.	1.7	33
208	Meridional Structure of the Seasonally Varying Mixed Layer Temperature Balance in the Eastern Tropical Pacific. Journal of Climate, 2008, 21, 3240-3260.	3.2	33
209	ADCP Velocity Errors from Pelagic Fish Schooling around Equatorial Moorings*. Journal of Atmospheric and Oceanic Technology, 1997, 14, 1212-1223.	1.3	32
210	Comparisons between the TAO Buoy and NASA Scatterometer Wind Vectors. Journal of Atmospheric and Oceanic Technology, 2001, 18, 799-806.	1.3	32
211	The influence of salinity on tropical <scp>A</scp> tlantic instability waves. Journal of Geophysical Research: Oceans, 2014, 119, 8375-8394.	2.6	31
212	Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition. Biogeosciences, 2015, 12, 2367-2382.	3.3	31
213	Seasonal cycle of crossâ€equatorial flow in the central <scp>I</scp> ndian <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2017, 122, 3817-3827.	2.6	31
214	Diurnal Cycle of Internal Wave Variability in the Equatorial Pacific Ocean: Results from Moored Observations. Journal of Physical Oceanography, 1992, 22, 1317-1329.	1.7	30
215	Surface Layer Heat Balance in the Eastern Equatorial Pacific Ocean on Interannual Time Scales: Influence of Local versus Remote Wind Forcing*. Journal of Climate, 2010, 23, 4375-4394.	3.2	29
216	Nearâ€surface current and temperature variability observed in the equatorial Atlantic from drifting buoys. Journal of Geophysical Research, 1986, 91, 6569-6581.	3.3	28

#	Article	IF	CITATIONS
217	Observations and windâ€forced model simulations of the mean seasonal cycle in tropical Pacific sea surface topography. Journal of Geophysical Research, 1988, 93, 8131-8146.	3.3	28
218	A Comparison of Tropical Pacific Surface Wind Analyses. Journal of Climate, 1989, 2, 105-111.	3.2	28
219	Generalized Inversion of Tropical Atmosphere–Ocean (TAO) Data and a Coupled Model of the Tropical Pacific. Part II: The 1995–96 La Niña and 1997–98 El Niño. Journal of Climate, 2000, 13, 2770-2785.	3.2	28
220	The Shallow Overturning Circulation in the Indian Ocean. Journal of Physical Oceanography, 2018, 48, 413-434.	1.7	27
221	El Niño–Southern Oscillation Evolution Modulated by Atlantic Forcing. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016318.	2.6	27
222	In Situ Observations of Diurnal Variability in Rainfall over the Tropical Pacific and Atlantic Oceans*. Journal of Climate, 2004, 17, 3496-3509.	3.2	26
223	Mixed Layer Heat Balance on Intraseasonal Time Scales in the Northwestern Tropical Atlantic Ocean*. Journal of Climate, 2005, 18, 4168-4184.	3.2	26
224	Wind stress and nearâ€ s urface shear in the equatorial Atlantic Ocean. Geophysical Research Letters, 2014, 41, 1226-1231.	4.0	26
225	Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the Southern Annular Mode. Scientific Reports, 2019, 9, 17044.	3.3	26
226	Wave-Mean Flow Interactions in the Equatorial Ocean. Annual Review of Fluid Mechanics, 1990, 22, 167-206.	25.0	25
227	The role of the turbulent stress divergence in the equatorial Pacific zonal momentum balance. Journal of Geophysical Research, 1991, 96, 7127-7136.	3.3	25
228	Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean Dipole. Geophysical Research Letters, 2014, 41, 7933-7941.	4.0	25
229	Wind-Forced Reversing Jets in the Western Equatorial Pacific*. Journal of Physical Oceanography, 2000, 30, 657-676.	1.7	24
230	Surface Measurements of Precipitation from an Ocean Mooring: The Underwater Acoustic Log from the South China Sea*. Journal of Applied Meteorology and Climatology, 2000, 39, 2182-2197.	1.7	24
231	Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. Journal of Geophysical Research, 2002, 107, SRF 13-1-SRF 13-13.	3.3	24
232	Unusually warm sea surface temperatures in the tropical North Atlantic during 2005. Geophysical Research Letters, 2006, 33, .	4.0	23
233	Eastern Equatorial Pacific Forcing of ENSO Sea Surface Temperature Anomalies*. Journal of Climate, 2008, 21, 6070-6079.	3.2	23
234	Quantifying the Role of Oceanic Feedbacks on ENSO Asymmetry. Geophysical Research Letters, 2019, 46, 2140-2148.	4.0	23

#	Article	IF	CITATIONS
235	Intraseasonal Kelvin Waves in the Equatorial Indian Ocean and Their Propagation into the Indonesian Seas. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015839.	2.6	23
236	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	18.8	23
237	Assessing ocean buoy shortwave observations using clear-sky model calculations. Journal of Geophysical Research, 2002, 107, 6-1.	3.3	22
238	Recent Changes in the Pacific Subtropical Cells Inferred from an Eddy-Resolving Ocean Circulation Model*. Journal of Physical Oceanography, 2007, 37, 1340-1356.	1.7	22
239	Seasonality of tropical <scp>P</scp> acific decadal trends associated with the 21st century global warming hiatus. Journal of Geophysical Research: Oceans, 2015, 120, 6782-6798.	2.6	22
240	The equatorial undercurrent: 100 years of discovery. Eos, 1986, 67, 762-765.	0.1	21
241	Internal Waves, Dynamic Instabilities, and Turbulence in the Equatorial Thermocline: An Introduction to Three Papers in this Issue. Journal of Physical Oceanography, 1992, 22, 1357-1359.	1.7	21
242	The Seasonal Cycle and Its Modulation in the Eastern Tropical Pacific Ocean. Journal of Physical Oceanography, 1997, 27, 2209-2218.	1.7	21
243	Dust Accumulation Biases in PIRATA Shortwave Radiation Records*. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1414-1432.	1.3	21
244	Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed?. Geophysical Research Letters, 2021, 48, e2021GL095041.	4.0	21
245	Fineâ€structure variability observed in CTD measurements from the central equatorial Pacific. Journal of Geophysical Research, 1985, 90, 11726-11740.	3.3	20
246	A Comparison of ship drift, drifting buoy, and current meter mooring velocities in the Pacific South Equatorial Current. Journal of Geophysical Research, 1991, 96, 775-781.	3.3	20
247	Effects of a threeâ€dimensional mean flow on intraseasonal Kelvin waves in the equatorial Pacific Ocean. Journal of Geophysical Research, 1993, 98, 10185-10194.	3.3	20
248	Estimating Rainfall in the Tropics Using the Fractional Time Raining. Journal of Applied Meteorology and Climatology, 1994, 33, 387-393.	1.7	20
249	Fourth CLIVAR Workshop on the Evaluation of ENSO Processes in Climate Models: ENSO in a Changing Climate. Bulletin of the American Meteorological Society, 2016, 97, 817-820.	3.3	20
250	Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014. Scientific Reports, 2018, 8, 2249.	3.3	20
251	Zonal momentum budget along the equator in the Indian Ocean from a highâ€resolution ocean general circulation model. Journal of Geophysical Research: Oceans, 2014, 119, 4444-4461.	2.6	19
252	Zonal Propagation of Near-Surface Zonal Currents in Relation to Surface Wind Forcing in the Equatorial Indian Ocean. Journal of Physical Oceanography, 2016, 46, 3623-3638.	1.7	19

#	Article	IF	CITATIONS
253	Vertical Propagation of Middepth Zonal Currents Associated With Surface Wind Forcing in the Equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 7290-7307.	2.6	19
254	Interannual Variability in Sea Surface Height at Southern Midlatitudes of the Indian Ocean. Journal of Physical Oceanography, 2021, 51, 1595-1609.	1.7	19
255	Design Studies for Climatological Measurements of Heat Storage. Journal of Physical Oceanography, 1984, 14, 318-337.	1.7	18
256	An indirect estimate of the diurnal cycle in upper ocean turbulent heat fluxes at the equator, 140°W. Journal of Geophysical Research, 1995, 100, 18369.	3.3	18
257	Uncoupled El Niño Warming. Geophysical Research Letters, 2020, 47, e2020GL087621.	4.0	18
258	Observational verification of a quasi real time simulation of the tropical Pacific Ocean. Journal of Geophysical Research, 1989, 94, 2147-2157.	3.3	17
259	Moored Salinity Time Series Measurements at 0°, 140°W. Journal of Atmospheric and Oceanic Technology, 1990, 7, 568-575.	1.3	17
260	On the sensitivity of Sverdrup transport estimates to the specification of wind stress forcing in the tropical Pacific. Journal of Geophysical Research, 1990, 95, 1681-1691.	3.3	17
261	Impact of environmental forcing on the acoustic backscattering strength in the equatorial Pacific: Diurnal, lunar, intraseasonal, and interannual variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 1314-1328.	1.4	17
262	The eleven-year El Nino?. Nature, 1994, 370, 326-327.	27.8	16
263	Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean. Climate Dynamics, 2014, 43, 2377-2397.	3.8	16
264	Meanders observed in surface currents and hydrography during an Equatorial Atlantic Transect. Geophysical Research Letters, 1984, 11, 757-760.	4.0	15
265	A model study of potential sampling errors due to data scatter around expendable bathythermograph transects in the tropical Pacific. Journal of Geophysical Research, 1988, 93, 8119-8130.	3.3	15
266	A comparison of coincidental time series of the ocean surface height by satellite altimeter, mooring, and inverted echo sounder. Journal of Geophysical Research, 1995, 100, 25101.	3.3	15
267	Multidecadal fluctuations in the relationship between equatorial Pacific heat content anomalies and ENSO amplitude. Geophysical Research Letters, 2004, 31, .	4.0	15
268	Factors influencing the skill of synthesized satellite wind products in the tropical Pacific. Journal of Geophysical Research: Oceans, 2017, 122, 1072-1089.	2.6	15
269	Dipole Structure of Mixed Layer Salinity in Response to El Niño‣a Niña Asymmetry in the Tropical Pacific. Geophysical Research Letters, 2019, 46, 12165-12172.	4.0	15
270	Meridional and Zonal Eddyâ€Induced Heat and Salt Transport in the Bay of Bengal and Their Seasonal Modulation. Journal of Geophysical Research: Oceans, 2019, 124, 8079-8101.	2.6	15

#	Article	IF	CITATIONS
271	100 Years of Progress in Ocean Observing Systems. Meteorological Monographs, 2019, 59, 3.1-3.46.	5.0	15
272	Trade wind fetchâ€related variations in equatorial undercurrent depth, speed, and transport. Journal of Geophysical Research, 1993, 98, 2555-2559.	3.3	13
273	Intercomparison of ADCP Measurements at 0°, 140°W. Journal of Atmospheric and Oceanic Technology, 1994, 11, 1334-1349.	1.3	13
274	An Ocean Observing System for Climate. Bulletin of the American Meteorological Society, 1996, 77, 2243-2273.	3.3	13
275	The 2 nd International Indian Ocean Expedition (IIOEâ€2): Motivating New Exploration in a Poorly Understood Basin. Limnology and Oceanography Bulletin, 2016, 25, 117-124.	0.4	13
276	Seasonal Mixed Layer Temperature Balance in the Southeastern Tropical Atlantic. Journal of Geophysical Research: Oceans, 2018, 123, 5557-5570.	2.6	13
277	ENSO drives near-surface oxygen and vertical habitat variability in the tropical Pacific. Environmental Research Letters, 2019, 14, 064020.	5.2	13
278	On the Structure of Low-Frequency Equatorial Waves. Journal of Physical Oceanography, 1987, 17, 1555-1559.	1.7	12
279	Topographic Scattering of Equatorial Kelvin Waves. Journal of Physical Oceanography, 1987, 17, 82-96.	1.7	12
280	Anomalous nutrient distribution in the equatorial Pacific in April 1988: evidence for rapid biological uptake. Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 1075-1084.	1.5	12
281	Evolution of a Sustained Ocean Observing System. Bulletin of the American Meteorological Society, 2001, 82, 1369-1376.	3.3	12
282	A Simple Analytical Model of the Diurnal Ekman Layer. Journal of Physical Oceanography, 2016, 46, 2877-2894.	1.7	12
283	Generalized inversion of the Gent-Cane model of the tropical Pacific with Tropical Atmosphere-Ocean (TAO) data. Journal of Marine Research, 2006, 64, 1-42.	0.3	12
284	Ocean Surface Layer Response to Convectively Coupled Kelvin Waves in the Eastern Equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 5727-5741.	2.6	11
285	Supplement to RAMA: The Research Moored Array for African—Asian—Australian Monsoon Analysis and Prediction. Bulletin of the American Meteorological Society, 2009, 90, ES5-ES8.	3.3	10
286	Wind Forced Wave–Mean Flow Interactions in the Equatorial Waveguide. Part I: The Kelvin Wave. Journal of Physical Oceanography, 1988, 18, 1435-1447.	1.7	9
287	Mooring observations and numerical modeling of thermal structures in the South China Sea. Journal of Geophysical Research, 2010, 115, .	3.3	9
288	Focusing of internal tides by nearâ€inertial waves. Geophysical Research Letters, 2017, 44, 2398-2406.	4.0	9

#	Article	IF	CITATIONS
289	Supplement to Cirene: Air—Sea Interactions in the Seychelles—Chagos Thermocline Ridge Region. Bulletin of the American Meteorological Society, 2009, 90, ES1-ES4.	3.3	7
290	Estimation of Vertical Heat Diffusivity at the Base of the Mixed Layer in the Bay of Bengal. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015402.	2.6	7
291	Comparison of Equatorial Winds as Measured by Cup and Propeller Anemometers. Journal of Atmospheric and Oceanic Technology, 1989, 6, 327-332.	1.3	6
292	Seasonal Evolution of the Surface Layer Heat Balance in the Eastern Subtropical Indian Ocean. Journal of Geophysical Research: Oceans, 2019, 124, 6459-6477.	2.6	6
293	Niño 4 West (Niñoâ€4W) Sea Surface Temperature Variability. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017591.	2.6	6
294	An Investigation of the Consistency of TAO–TRITON Buoy-Mounted Capacitance Rain Gauges*. Journal of Atmospheric and Oceanic Technology, 2012, 29, 834-845.	1.3	5
295	On the interchangeability of sea-surface and near-surface air temperature anomalies in climatologies. Scientific Reports, 2020, 10, 7433.	3.3	5
296	Zonal Structure of Tropical Pacific Surface Salinity Anomalies Affects ENSO Intensity and Asymmetry. Geophysical Research Letters, 2022, 49, .	4.0	5
297	Two Decades of Full-Depth Current Velocity Observations From a Moored Observatory in the Central Equatorial Atlantic at 0A°N, 23A°W. Frontiers in Marine Science, 0, 9, .	2.5	5
298	Temperature variations in the Equatorial Atlantic as revealed by drifting buoys. Geophysical Research Letters, 1984, 11, 791-794.	4.0	4
299	Comment on "Rossbyâ€gravity waves in the central equatorial Pacific Ocean during the NORPAX Hawaiiâ€toâ€Tahiti Shuttle Experiment―by S. M. Chiswell and R. Lukas. Journal of Geophysical Research, 1990, 95, 805-806.	3.3	4
300	The Effects of External Forcing and Internal Variability on the Formation of Interhemispheric Sea Surface Temperature Gradient Trends in the Indian Ocean. Journal of Climate, 2017, 30, 9077-9095.	3.2	4
301	Diurnal variability of atmospheric cold pool events and associated air-sea interactions in the Bay of Bengal during the summer monsoon. Climate Dynamics, 2021, 56, 837-853.	3.8	4
302	A Theory of the Spring Persistence Barrier on ENSO. Part III: The Role of Tropical Pacific Ocean Heat Content. Journal of Climate, 2021, 34, 8567-8577.	3.2	4
303	The Effects of Mean Shear Flow on Equatorial Basin Modes. Journal of Physical Oceanography, 1982, 12, 795-804.	1.7	3
304	Biweekly Mixed Rossbyâ€Gravity Waves in the Equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016840.	2.6	3
305	Atmospheric Cold Pools and Their Influence on Sea Surface Temperature in the Bay of Bengal. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017297.	2.6	3

 $_{\rm 306}$ $\,$ El Niño and Ocean Observations. , 2006, , 79-99.

#	Article	IF	CITATIONS
307	PMEL Contributions to the OceanSITES Program. , 2006, , .		2
308	Predicting Interannual Variability in Sea Surface Height Along the West Coast of Australia Using a Simple Ocean Model. Geophysical Research Letters, 2021, 48, e2021GL094592.	4.0	2
309	Variability of the Oceans. , 2020, , 1-53.		2
310	Reply [to "Comment on â€~The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986' by M. J. McPhaden et al.â€]. Journal of Geophysical Research, 1989, 94, 5027-5028.	3.3	1
311	Moored time series measurements. Eos, 1990, 71, 760.	0.1	1
312	Role of the eastern boundary-generated waves on the termination of 1997 Indian Ocean Dipole event. Geoscience Letters, 2021, 8, .	3.3	1
313	Assessment of radiative heating errors in Tropical Atmosphere Ocean array marine air temperature measurements. Environmental Research Letters, 2022, 17, 014040.	5.2	1
314	The equatorial undercurrent: 100 years of discovery. History of Geophysics, 1990, , 109-114.	0.0	0
315	Diverse impacts of Indian Ocean Dipole on El Niño-Southern Oscillation. Journal of Climate, 2021, , 1-46.	3.2	Ο