
## Richard J Mckenney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426047/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science, 2014, 345, 337-341.                                                                                                                         | 12.6 | 509       |
| 2  | Tyrosination of αâ€ŧubulin controls the initiation of processive dynein–dynactin motility. EMBO Journal,<br>2016, 35, 1175-1185.                                                                                                    | 7.8  | 173       |
| 3  | Multiple modes of cytoplasmic dynein regulation. Nature Cell Biology, 2012, 14, 224-230.                                                                                                                                            | 10.3 | 158       |
| 4  | Microtubules gate tau condensation to spatially regulate microtubule functions. Nature Cell<br>Biology, 2019, 21, 1078-1085.                                                                                                        | 10.3 | 147       |
| 5  | Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility.<br>Nature Structural and Molecular Biology, 2018, 25, 203-207.                                                                   | 8.2  | 122       |
| 6  | A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Developmental Cell, 2020, 53, 60-72.e4.                                                                                                                          | 7.0  | 106       |
| 7  | Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18429-18434. | 7.1  | 89        |
| 8  | Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule<br>Dynamics and Dendrite Morphogenesis. Neuron, 2016, 90, 551-563.                                                                | 8.1  | 75        |
| 9  | Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. Journal of Biological Chemistry, 2017, 292, 12245-12255.                                                               | 3.4  | 67        |
| 10 | Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into<br>Dendrites by a Microtubule-Associated Septin. Developmental Cell, 2018, 46, 204-218.e7.                                          | 7.0  | 65        |
| 11 | Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule<br>Network Reorganization. Developmental Cell, 2018, 44, 233-247.e4.                                                                       | 7.0  | 62        |
| 12 | New insights into the mechanism of dynein motor regulation by lissencephaly-1. ELife, 2020, 9, .                                                                                                                                    | 6.0  | 52        |
| 13 | The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. ELife, 2020, 9, .                                                                                 | 6.0  | 40        |
| 14 | A highly conserved 3 <sub>10</sub> helix within the kinesin motor domain is critical for kinesin function and human health. Science Advances, 2021, 7, .                                                                            | 10.3 | 31        |
| 15 | Cdt1 stabilizes kinetochore–microtubule attachments via an Aurora B kinase–dependent mechanism.<br>Journal of Cell Biology, 2018, 217, 3446-3463.                                                                                   | 5.2  | 21        |
| 16 | Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of<br>kinetochore–microtubule attachments during mitosis. Journal of Biological Chemistry, 2018, 293,<br>5755-5765.                        | 3.4  | 20        |
| 17 | Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH. Journal of Biological Chemistry, 2019, 294, 8779-8790.                                                      | 3.4  | 12        |
| 18 | Absence of SCAPER causes male infertility in humans and <i>Drosophila</i> by modulating microtubule dynamics during meiosis. Journal of Medical Genetics, 2021, 58, 254-263.                                                        | 3.2  | 7         |

| #  | Article                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Magnetic Cytoskeleton Affinity Purification of Microtubule Motors Conjugated to Quantum Dots.<br>Bioconjugate Chemistry, 2018, 29, 2278-2286.      | 3.6  | 6         |
| 20 | LIS1 cracks open dynein. Nature Cell Biology, 2020, 22, 515-517.                                                                                   | 10.3 | 5         |
| 21 | In Vitro and In Vivo Approaches to Study Kinetochore-Microtubule Attachments During Mitosis.<br>Methods in Molecular Biology, 2022, 2415, 123-138. | 0.9  | 3         |
| 22 | The tail wags the motor. Nature Chemical Biology, 2019, 15, 1033-1034.                                                                             | 8.0  | 0         |