Thomas Eulgem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6425215/publications.pdf Version: 2024-02-01

THOMAS FULCEM

#	Article	IF	CITATIONS
1	The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genetics, 2020, 16, e1008993.	3.5	33
2	DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Nature Plants, 2020, 6, 675-685.	9.3	55
3	A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina. Scientific Reports, 2019, 9, 20083.	3.3	14
4	The Arabidopsis <scp>RRM</scp> domain protein <scp>EDM</scp> 3 mediates raceâ€specific disease resistance by controlling H3K9me2â€dependent alternative polyadenylation of <i><scp>RPP</scp>7</i> immune receptor transcripts. Plant Journal, 2019, 97, 646-660.	5.7	24
5	Transcriptâ€level expression control of plant NLR genes. Molecular Plant Pathology, 2018, 19, 1267-1281.	4.2	82
6	The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato. Scientific Reports, 2016, 6, 29554.	3.3	33
7	Use of enhancer trapping to identify pathogenâ€induced regulatory events spatially restricted to plant–microbe interaction sites. Molecular Plant Pathology, 2016, 17, 388-397.	4.2	2
8	The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis. Plant Physiology, 2016, 170, 444-458.	4.8	26
9	The PHD-finger module of the <i>Arabidopsis thaliana</i> defense regulator EDM2 can recognize triply modified histone H3 peptides. Plant Signaling and Behavior, 2014, 9, e29202.	2.4	15
10	Overexpression of <i><scp>CaWRKY27</scp></i> , a subgroup <scp>lle WRKY</scp> transcription factor of <i>Capsicum annuum</i> , positively regulates tobacco resistance to <i>Ralstonia solanacearum</i> infection. Physiologia Plantarum, 2014, 150, 397-411.	5.2	144
11	Synthetic plant defense elicitors. Frontiers in Plant Science, 2014, 5, 804.	3.6	240
12	Mutations in EDM2 selectively affect silencing states of transposons and induce plant developmental plasticity. Scientific Reports, 2013, 3, 1701.	3.3	23
13	An alternative polyadenylation mechanism coopted to the <i>Arabidopsis RPP7</i> gene through intronic retrotransposon domestication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3535-43.	7.1	150
14	NSD1 Mitigates Caspase-1 Activation by Listeriolysin O in Macrophages. PLoS ONE, 2013, 8, e75911.	2.5	12
15	SIWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta, 2012, 235, 299-309.	3.2	111
16	<i>EMSY</i> - <i>Like</i> Genes Are Required for Full <i>RPP7</i> -Mediated Race-Specific Immunity and Basal Defense in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2011, 24, 1573-1581.	2.6	28
17	Co-option of EDM2 to distinct regulatory modules in Arabidopsis thaliana development. BMC Plant Biology, 2010, 10, 203.	3.6	18
18	The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. Plant Journal, 2010, 62, 518-528.	5.7	54

THOMAS EULGEM

#	Article	IF	CITATIONS
19	WRKY72â€type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as geneâ€forâ€gene resistance mediated by the tomato <i>R</i> â€fgene <i>Miâ€1</i> . Plant Journal, 2010, 63, 229	-2:40.	181
20	The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces <i>NPR1</i> -Dependent and <i>NPR1</i> -Independent Mechanisms of Disease Resistance in Arabidopsis Â. Plant Physiology, 2009, 150, 333-347.	4.8	74
21	FORCA, a promoter element that responds to crosstalk between defense and light signaling. BMC Plant Biology, 2009, 9, 2.	3.6	24
22	The oomycete response gene <i>LURP1</i> is required for defense against <i>Hyaloperonospora parasitica</i> in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 53-64.	5.7	88
23	Arabidopsis WRKY70 Is Required for Full RPP4-Mediated Disease Resistance and Basal Defense Against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 2007, 20, 120-128.	2.6	189
24	EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant Journal, 2007, 49, 829-839.	5.7	120
25	Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10, 366-371.	7.1	1,159
26	Dissecting the WRKY Web of Plant Defense Regulators. PLoS Pathogens, 2006, 2, e126.	4.7	107
27	Genetic Analysis of Developmentally Regulated Resistance to Downy Mildew (Hyaloperonospora) Tj ETQq1 1 0.78	4314 rgBT 2.6	Loverlock
28	Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science, 2005, 10, 71-78.	8.8	396
29	Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance. Plant Physiology, 2004, 135, 1129-1144.	4.8	128
30	Recognition and Response in the Plant Immune System. Annual Review of Genetics, 2003, 37, 579-609.	7.6	489
31	Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses[W]. Plant Cell, 2002, 14, 559-574.	6.6	849
32	Arabidopsis SGT1b Is Required for Defense Signaling Conferred by Several Downy Mildew Resistance Genes. Plant Cell, 2002, 14, 993-1003.	6.6	209
33	Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 92-100.	2.4	96
34	The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 2000, 26, 403-410.	21.4	931
35	The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5, 199-206.	8.8	2,462