
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6425059/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Tumorigenic mechanisms of estrogen and Helicobacter pylori cytotoxin-associated gene A in estrogen receptor α-positive diffuse-type gastric adenocarcinoma. Gastric Cancer, 2022, 25, 678-696.	2.7	12
2	Increased CD44 Expression and MEK Activity Predict Worse Prognosis in Gastric Adenocarcinoma Patients Undergoing Gastrectomy. Journal of Gastrointestinal Surgery, 2021, 25, 1147-1155.	0.9	6
3	Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. Oncogene, 2021, 40, 922-936.	2.6	20
4	PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death and Disease, 2021, 12, 749.	2.7	16
5	FOXC1 modulates stem-like cell properties and chemoresistance through Hedgehog and EMT signaling in gastric adenocarcinoma. Molecular Therapy, 2021, , .	3.7	4
6	PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis, 2021, 10, 12.	2.1	38
7	Long-Term Survival after Minimally Invasive Versus Open Gastrectomy for Gastric Adenocarcinoma: A Propensity Score-Matched Analysis of Patients in the United States and China. Annals of Surgical Oncology, 2020, 27, 802-811.	0.7	10
8	Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Letters, 2020, 471, 38-48.	3.2	185
9	CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. British Journal of Cancer, 2020, 123, 1131-1144.	2.9	10
10	ERK1/2-Nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas. Cell Death and Disease, 2020, 11, 266.	2.7	48
11	CDX1 Expression Induced by CagA-Expressing <i>Helicobacter pylori</i> Promotes Gastric Tumorigenesis. Molecular Cancer Research, 2019, 17, 2169-2183.	1.5	25
12	UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expression of PDK1 through PI3K/AKT signaling. Journal of Experimental and Clinical Cancer Research, 2019, 38, 410.	3.5	42
13	KRAS Activation in Gastric Adenocarcinoma Stimulates Epithelial-to-Mesenchymal Transition to Cancer Stem–Like Cells and Promotes Metastasis. Molecular Cancer Research, 2019, 17, 1945-1957.	1.5	31
14	Development and validation of a staging system for gastric adenocarcinoma after neoadjuvant chemotherapy and gastrectomy with D2 lymphadenectomy. British Journal of Surgery, 2019, 106, 1187-1196.	0.1	12
15	Abstract 4680: KRAS activation in gastric adenocarcinoma stimulates epithelial-to-mesenchymal transition to cancer stem-like cells and promotes metastasis. , 2019, , .		1
16	Abstract 4680: KRAS activation in gastric adenocarcinoma stimulates epithelial-to-mesenchymal transition to cancer stem-like cells and promotes metastasis. , 2019, , .		1
17	Lauren Histologic Type Is the Most Important Factor Associated With Pattern of Recurrence Following Resection of Gastric Adenocarcinoma. Annals of Surgery, 2018, 267, 105-113.	2.1	103
18	Comparison of Outcomes for Elderly Gastric Cancer Patients at Least 80 Years of Age Following Gastrectomy in the United States and China. Annals of Surgical Oncology, 2018, 25, 3629-3638.	0.7	6

#	Article	IF	CITATIONS
19	<i>KMT2C</i> Mutations in Diffuse-Type Gastric Adenocarcinoma Promote Epithelial-to-Mesenchymal Transition. Clinical Cancer Research, 2018, 24, 6556-6569.	3.2	70
20	Platelet-derived growth factor receptor-α and -β promote cancer stem cell phenotypes in sarcomas. Oncogenesis, 2018, 7, 47.	2.1	28
21	Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Molecular Cancer Research, 2017, 15, 1106-1116.	1.5	74
22	Oncogenic KRAS and p53 Loss Drive Gastric Tumorigenesis in Mice That Can Be Attenuated by E-Cadherin Expression. Cancer Research, 2017, 77, 5349-5359.	0.4	56
23	Abstract 2897: Oncogenic Kras activation in gastric adenocarcinoma promotes cancer stem cell phenotypes including metastasis & chemotherapy resistance. , 2017, , .		0
24	Abstract 2899: Hypoxia-inducible factor 1-α maintains sarcoma stem-like cells in hypoxic regions of tumors and promotes migration and invasion via upregulation of platelet-derived growth factor receptors. , 2017, , .		0
25	Increased RhoA Activity Predicts Worse Overall Survival in Patients Undergoing Surgical Resection for Lauren Diffuse-Type Gastric Adenocarcinoma. Annals of Surgical Oncology, 2016, 23, 4238-4246.	0.7	6
26	Platelet-Derived Growth Factor Receptor Alpha Promotes Cancer Stem-Like Cell Phenotypes in Sarcomas Including Metastasis and Chemotherapy Resistance. Journal of the American College of Surgeons, 2016, 223, S142-S143.	0.2	1
27	Chemotherapy Resistance in Diffuse-Type Gastric Adenocarcinoma Is Mediated by RhoA Activation in Cancer Stem-Like Cells. Clinical Cancer Research, 2016, 22, 971-983.	3.2	89
28	Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-11± inhibition, and hypoxia-activated chemotherapy. Oncotarget, 2016, 7, 42844-42858.	0.8	18
29	Abstract 893: Diffuse gastric adenocarcinoma often harborsKMT2Cmutations resulting in malignant phenotypes and worse overall survival. , 2016, , .		0
30	Hypoxia-activated chemotherapeutic TH-302 enhances the effects of VEGF-A inhibition and radiation on sarcomas. British Journal of Cancer, 2015, 113, 46-56.	2.9	24
31	Vascular Endothelial Growth Factor A Inhibition in Gastric Cancer. Gastric Cancer, 2015, 18, 33-42.	2.7	55
32	Serum VEGF-A and Tumor Vessel VEGFR-2 Levels Predict Survival in Caucasian but Not Asian Patients Undergoing Resection for Gastric Adenocarcinoma. Annals of Surgical Oncology, 2015, 22, 1508-1515.	0.7	26
33	Abstract 4414: RhoA activation in diffuse type gastric adenocarcinoma promotes cancer stem cell phenotypes including chemotherapy resistance. , 2015, , .		0
34	CD44 Expression Denotes a Subpopulation of Gastric Cancer Cells in Which Hedgehog Signaling Promotes Chemotherapy Resistance. Clinical Cancer Research, 2014, 20, 3974-3988.	3.2	159
35	Prognostic Significance of Targetable Angiogenic and Growth Factors in Patients Undergoing Resection for Gastric and Gastroesophageal Junction Cancers. Annals of Surgical Oncology, 2014, 21, 1130-1137.	0.7	29
36	Abstract 3873: Hedgehog signaling maintains gastric cancer stem cells and promotes chemotherapy resistance: results from laboratory and clinical studies. , 2014, , .		0

#	Article	IF	CITATIONS
37	Claudin-1 induces epithelial–mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene, 2013, 32, 4873-4882.	2.6	182
38	Combining PARP-1 Inhibition and Radiation in Ewing Sarcoma Results in Lethal DNA Damage. Molecular Cancer Therapeutics, 2013, 12, 2591-2600.	1.9	71
39	PTTG1 Oncogene Promotes Tumor Malignancy via Epithelial to Mesenchymal Transition and Expansion of Cancer Stem Cell Population. Journal of Biological Chemistry, 2012, 287, 19516-19527.	1.6	86
40	A New 2-Pyrone Derivative, 5-Bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, Suppresses Stemness in Glioma Stem-Like Cells. Molecular Pharmacology, 2012, 82, 400-407.	1.0	11
41	A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, synergistically enhances radiation sensitivity in human cervical cancer cells. Anti-Cancer Drugs, 2012, 23, 43-50.	0.7	4
42	c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene, 2012, 31, 4655-4666.	2.6	95
43	Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. International Journal of Nanomedicine, 2012, 7, 1203.	3.3	47
44	Importance of PKCÎ′ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. Journal of Cell Science, 2011, 124, 3084-3094.	1.2	44
45	Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anti-Cancer Drugs, 2011, 22, 763-773.	0.7	26
46	The effects of outdoor air supply rate on work performance during 8-h work period. Indoor Air, 2011, 21, 284-290.	2.0	51
47	Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells. Toxicology and Applied Pharmacology, 2011, 254, 32-40.	1.3	57
48	Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via mitochondrial defects. Experimental Cell Research, 2011, 317, 1108-1118.	1.2	42
49	The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Letters, 2011, 585, 2331-2338.	1.3	45
50	Involvement of Autophagy in Oncogenic K-Ras-induced Malignant Cell Transformation. Journal of Biological Chemistry, 2011, 286, 12924-12932.	1.6	196
51	Claudin-1 Acts through c-Abl-Protein Kinase Cl̂´ (PKCl̂) Signaling and Has a Causal Role in the Acquisition of Invasive Capacity in Human Liver Cells. Journal of Biological Chemistry, 2010, 285, 226-233.	1.6	92
52	Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation. Biochemical and Biophysical Research Communications, 2010, 402, 631-636.	1.0	22
53	Oncogenic Ras Signals through Activation of Both Phosphoinositide 3-Kinase and Rac1 to Induce c-Jun NH2-Terminal Kinase–Mediated, Caspase-Independent Cell Death. Molecular Cancer Research, 2009, 7, 1534-1542.	1.5	17
54	Activation of p38 Mitogen-Activated Protein Kinase Is Required for Death Receptor–Independent Caspase-8 Activation and Cell Death in Response to Sphingosine. Molecular Cancer Research, 2009, 7, 361-370.	1.5	24

#	Article	IF	CITATIONS
55	The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis, 2009, 30, 1880-1888.	1.3	124
56	Reactive Oxygen Species-Dependent Activation of Bax and Poly(ADP-ribose) Polymerase-1 Is Required for Mitochondrial Cell Death Induced by Triterpenoid Pristimerin in Human Cervical Cancer Cells. Molecular Pharmacology, 2009, 76, 734-744.	1.0	82
57	Imatinib Mesylate Reduces Endoplasmic Reticulum Stress and Induces Remission of Diabetes in <i>db/db</i> Mice. Diabetes, 2009, 58, 329-336.	0.3	106
58	Activation of Lck is critically required for sphingosine-induced conformational activation of Bak and mitochondrial cell death. Biochemical and Biophysical Research Communications, 2008, 370, 353-358.	1.0	11