Yoshihiro Hishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6425032/publications.pdf Version: 2024-02-01

Υσεμιμιρο Ηιεμικλινλ

#	Article	IF	CITATIONS
1	Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications, 2012, 20, 12-20.	4.4	1,047
2	Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications, 2017, 25, 668-676.	4.4	792
3	Solar cell efficiency tables (version 51). Progress in Photovoltaics: Research and Applications, 2018, 26, 3-12.	4.4	729
4	Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27, 3-12.	4.4	655
5	Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications, 2018, 26, 427-436.	4.4	592
6	Solar cell efficiency tables (version 49). Progress in Photovoltaics: Research and Applications, 2017, 25, 3-13.	4.4	582
7	Solar cell efficiency tables (version 46). Progress in Photovoltaics: Research and Applications, 2015, 23, 805-812.	4.4	471
8	Solar cell efficiency tables (version 33). Progress in Photovoltaics: Research and Applications, 2009, 17, 85-94.	4.4	301
9	Voltage-Dependent Temperature Coefficient of the I–V Curves of Crystalline Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics, 2018, 8, 48-53.	1.5	51
10	Precise Outdoor PV Module Performance Characterization Under Unstable Irradiance. IEEE Journal of Photovoltaics, 2016, 6, 1221-1227.	1.5	41
11	Modeling of the I–V curves of the PV modules using linear interpolation/extrapolation. Solar Energy Materials and Solar Cells, 2009, 93, 1070-1073.	3.0	39
12	Translation of Solar Cell Performance for Irradiance and Temperature From a Single <i>I-V</i> Curve Without Advance Information of Translation Parameters. IEEE Journal of Photovoltaics, 2019, 9, 1195-1201.	1.5	25
13	Precise performance characterization of perovskite solar cells. Current Applied Physics, 2016, 16, 898-904.	1.1	23
14	Round-robin measurement intercomparison of c-Si PV modules among Asian testing laboratories. Progress in Photovoltaics: Research and Applications, 2013, 21, 1181-1188.	4.4	22
15	Spectral mismatch correction factor indicated by average photon energy for precise outdoor performance measurements of different-type photovoltaic modules. Renewable Energy, 2017, 114, 567-573.	4.3	19
16	Temperature dependence of the short circuit current and spectral responsivity of various kinds of crystalline silicon photovoltaic devices. Japanese Journal of Applied Physics, 2018, 57, 08RG17.	0.8	19
17	Impact of average photon energy on spectral gain and loss of various-type PV technologies at different locations. Renewable Energy, 2020, 145, 1317-1324.	4.3	19
18	Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Solar Energy, 2020, 204, 459-465.	2.9	19

Yoshihiro Hishikawa

#	Article	IF	CITATIONS
19	Study of highly precise outdoor characterization technique for photovoltaic modules in terms of reproducibility. Japanese Journal of Applied Physics, 2015, 54, 08KG06.	0.8	18
20	Detection of shading effect by using the current and voltage at maximum power point of crystalline silicon PV modules. Solar Energy, 2020, 211, 1365-1372.	2.9	14
21	Description of performance degradation of photovoltaic modules using spectral mismatch correction factor under different irradiance levels. Renewable Energy, 2019, 141, 444-450.	4.3	13
22	Outdoor Direct STC Performance Measurement of PV Modules Based on a Sun-Shading Technique. IEEE Journal of Photovoltaics, 2017, 7, 1725-1730.	1.5	9
23	Spectral mismatch correction factor for precise outdoor performance evaluation and description of performance degradation of different-type photovoltaic modules. Solar Energy, 2019, 181, 169-177.	2.9	9
24	Description of short circuit current of outdoor photovoltaic modules by multiple regression analysis under various solar irradiance levels. Renewable Energy, 2020, 147, 895-902.	4.3	9
25	Spectral gain and loss of different-type photovoltaic modules through average photon energy of various locations in Japan. Solar Energy, 2021, 214, 1-10.	2.9	8
26	New technology for precise outdoor PV module performance measurements. , 2015, , .		7
27	Physical process and statistical properties of solar irradiance enhancement observed under clouds. Japanese Journal of Applied Physics, 2018, 57, 08RG11.	0.8	7
28	Improved precision of the outdoor performance measurements of photovoltaic modules by using the photovoltaic irradiance sensor. Solar Energy, 2020, 211, 82-89.	2.9	6
29	Impact of average photon-energy coefficient of solar spectrum on the short circuit current of photovoltaic modules. Current Applied Physics, 2017, 17, 1341-1346.	1.1	5
30	Effects of synchronous irradiance monitoring and correction of current–voltage curves on the outdoor performance measurements of photovoltaic modules. Japanese Journal of Applied Physics, 2017, 56, 08MD07.	0.8	5
31	Utilization of spectral mismatch correction factor for estimation of precise outdoor performance under different average photon energies. Renewable Energy, 2020, 157, 173-181.	4.3	4
32	Filtering method of detecting solar irradiance conditions for photovoltaic module performance characterization under unstable and nonuniform irradiance. Japanese Journal of Applied Physics, 2018, 57, 08RG10.	0.8	3
33	Short-period fluctuation and spatial distribution of solar irradiance under clouds. Japanese Journal of Applied Physics, 2018, 57, 08RG12.	0.8	3
34	Accurate estimation of outdoor performance of photovoltaic module through spectral mismatch correction factor under wide range of solar spectrum. Current Applied Physics, 2021, 28, 59-71.	1.1	3
35	Comparison of Curve Correction Procedures for Current–Voltage Characteristics of Photovoltaic Devices. Japanese Journal of Applied Physics, 2012, 51, 10NF02.	0.8	3
36	Corrections to "Translation of Solar Cell Performance for Irradiance and Temperature From a Single I-V Curve Without Advance Information of Translation Parameters―[Sep 19 1195-1201]. IEEE Journal of Photovoltaics, 2020, 10, 912-912.	1.5	2

#	ARTICLE	IF	CITATIONS
37	Precise performance diagnosis of photovoltaic string by operation voltage and current: Experimental verification. Solar Energy, 2021, 230, 704-713.	2.9	1
38	Evaluation of power generation performance using only the nameplate value using linear interpolation method. , 2018, , .		0