Liang Xian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6424981/publications.pdf

Version: 2024-02-01

430874 610901 1,191 24 18 24 h-index citations g-index papers 24 24 24 710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogen bonding assisted OHâ^' transport under low humidity for rapid start-up in AEMFCs. Journal of Membrane Science, 2022, 647, 120303.	8.2	15
2	Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Industrial & Engineering Chemistry Research, 2022, 61, 4329-4338.	3.7	14
3	High-performance bipolar membrane for electrochemical water electrolysis. Journal of Membrane Science, 2022, 656, 120660.	8.2	11
4	Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 327-337.	10.3	116
5	Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9.	12.8	49
6	Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast <scp>OH</scp> ^{â°'} conduction. AICHE Journal, 2021, 67, e17133.	3.6	53
7	Flexible Bis-piperidinium Side Chains Construct Highly Conductive and Robust Anion-Exchange Membranes. ACS Applied Energy Materials, 2021, 4, 9701-9711.	5.1	34
8	Fast Bulky Anion Conduction Enabled by Free Shuttling Phosphonium Cations. Research, 2021, 2021, 9762709.	5.7	11
9	Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. Journal of Membrane Science, 2021, 637, 119650.	8.2	13
10	3Dâ€Zipped Interface: In Situ Covalentâ€Locking for High Performance of Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2102637.	11.2	21
11	Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain. Journal of Membrane Science, 2020, 595, 117483.	8.2	48
12	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie, 2020, 132, 9651-9660.	2.0	20
13	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie - International Edition, 2020, 59, 9564-9573.	13.8	145
14	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	2.0	20
15	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	13.8	47
16	Ionomer Cross-Linking Immobilization of Catalyst Nanoparticles for High Performance Alkaline Membrane Fuel Cells. Chemistry of Materials, 2019, 31, 7812-7820.	6.7	57
17	Angioplasty mimetic stented ion transport channels construct durable high-performance membranes. Journal of Materials Chemistry A, 2019, 7, 10030-10040.	10.3	12
18	Towards the gemini cation anion exchange membranes by nucleophilic substitution reaction. Science China Materials, 2019, 62, 973-981.	6.3	18

#	Article	IF	CITATIONS
19	Anion exchange membranes with branched ionic clusters for fuel cells. Journal of Materials Chemistry A, 2018, 6, 5993-5998.	10.3	70
20	Achieving high anion conductivity by densely grafting of ionic strings. Journal of Membrane Science, 2018, 559, 35-41.	8.2	38
21	A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability. Journal of Materials Chemistry A, 2018, 6, 527-534.	10.3	101
22	Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy and Environmental Science, 2018, 11, 3472-3479.	30.8	196
23	Highly conductive and stabilized side-chain-type anion exchange membranes: ideal alternatives for alkaline fuel cell applications. Journal of Materials Chemistry A, 2018, 6, 17101-17110.	10.3	58
24	Thermally triggered polyrotaxane translational motion helps proton transfer. Nature Communications, 2018, 9, 2297.	12.8	24