
Hans de Cock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6424915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Protective Role of 1,8-Dihydroxynaphthalene–Melanin on Conidia of the Opportunistic Human Pathogen Aspergillus fumigatus Revisited: No Role in Protection against Hydrogen Peroxide and Superoxides. MSphere, 2022, 7, e0087421.	2.9	4
2	Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. Journal of Fungi (Basel, Switzerland), 2022, 8, 48.	3.5	8
3	Host defence peptides identified in human apolipoprotein B as promising antifungal agents. Applied Microbiology and Biotechnology, 2021, 105, 1953-1964.	3.6	13
4	Back to the Basics: Two Approaches for the Identification and Extraction of Lipid Droplets from Malassezia pachydermatis CBS1879 and Malassezia globosa CBS7966. Current Protocols, 2021, 1, e122.	2.9	1
5	Variation of virulence of five Aspergillus fumigatus isolates in four different infection models. PLoS ONE, 2021, 16, e0252948.	2.5	9
6	Analysis of Malassezia Lipidome Disclosed Differences Among the Species and Reveals Presence of Unusual Yeast Lipids. Frontiers in Cellular and Infection Microbiology, 2020, 10, 338.	3.9	22
7	In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know?. Journal of Fungi (Basel, Switzerland), 2020, 6, 155.	3.5	11
8	The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs. Npj Biofilms and Microbiomes, 2020, 6, 51.	6.4	3
9	EphA2-Dependent Internalization of A. fumigatus Conidia in A549 Lung Cells Is Modulated by DHN-Melanin. Frontiers in Microbiology, 2020, 11, 534118.	3.5	15
10	New Therapeutic Candidates for the Treatment of Malassezia pachydermatis -Associated Infections. Scientific Reports, 2020, 10, 4860.	3.3	7
11	Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Medical Mycology, 2020, 58, 1073-1084.	0.7	27
12	Antifungal activities of surfactant protein D in an environment closely mimicking the lung lining. Molecular Immunology, 2019, 105, 260-269.	2.2	10
13	Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography–mass spectrometry. Medical Mycology, 2018, 56, 253-256.	0.7	14
14	Comparative genotyping and phenotyping of Aspergillus fumigatus isolates from humans, dogs and the environment. BMC Microbiology, 2018, 18, 118.	3.3	14
15	Expression profile analysis reveals that Aspergillus fumigatus but not Aspergillus niger makes type II epithelial lung cells less immunological alert. BMC Genomics, 2018, 19, 534.	2.8	11
16	Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 2017, 134, 1-6.	1.6	34
17	Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling. Frontiers in Microbiology, 2017, 8, 1772.	3.5	31
18	Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen. Frontiers in Microbiology, 2016, 7, 438.	3.5	47

HANS DE COCK

#	Article	IF	CITATIONS
19	Draft Genome Sequence of the Animal and Human Pathogen <i>Malassezia pachydermatis</i> Strain CBS 1879. Genome Announcements, 2015, 3, .	0.8	30
20	Effective Neutrophil Phagocytosis of <i>Aspergillus</i> <i>fumigatus</i> Is Mediated by Classical Pathway Complement Activation. Journal of Innate Immunity, 2015, 7, 364-374.	3.8	39
21	Deletion of the CAP10 gene of Cryptococcus neoformans results in a pleiotropic phenotype with changes in expression of virulence factors. Research in Microbiology, 2014, 165, 399-410.	2.1	21
22	Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone: a case report. BMC Infectious Diseases, 2013, 13, 59.	2.9	35
23	The <i>Cryptococcus neoformans cap10</i> and <i>cap59</i> mutant strains, affected in glucuronoxylomannan synthesis, differentially activate human dendritic cells. FEMS Immunology and Medical Microbiology, 2009, 57, 142-150.	2.7	23
24	Production of Extracellular Polysaccharides by <i>CAP</i> Mutants of <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2009, 8, 1165-1173.	3.4	20
25	Investigation into the Interaction of the Phosphoporin PhoE with Outer Membrane Lipids: Physicochemical Characterization and Biological Activity. Medicinal Chemistry, 2005, 1, 537-546.	1.5	6
26	MsbA Is Not Required for Phospholipid Transport in Neisseria meningitidis. Journal of Biological Chemistry, 2005, 280, 35961-35966.	3.4	46
27	Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts. Journal of Biological Chemistry, 2005, 280, 4504-4509.	3.4	78
28	Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1636, 205-212.	2.4	11
29	Chaperones and Folding Catalysts Involved in the General Protein Secretion Pathway of Escherichia Coli. , 2003, , 99-119.		Ο
30	Pore Formation and Function of Phosphoporin PhoE of Escherichia coli Are Determined by the Core Sugar Moiety of Lipopolysaccharide. Journal of Biological Chemistry, 2002, 277, 34247-34253.	3.4	26
31	The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. FEBS Journal, 2002, 269, 5564-5571.	0.2	44
32	Identification of phospholipids as new components that assist in thein vitrotrimerization of a bacterial pore protein. FEBS Journal, 2001, 268, 865-875.	0.2	29
33	The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO Journal, 2001, 20, 285-294.	7.8	206
34	Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant. EMBO Journal, 2001, 20, 6937-6945.	7.8	116
35	The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane. Journal of Biological Chemistry, 2001, 276, 18804-18811.	3.4	95
36	The assembly pathway of outer membrane protein PhoE of Escherichia coli. FEBS Journal, 2000, 267, 3792-3800.	0.2	46

HANS DE COCK

#	Article	IF	CITATIONS
37	Immunogenicity of in vitro folded outer membrane protein PorA ofNeisseria meningitidis. FEMS Immunology and Medical Microbiology, 2000, 27, 227-233.	2.7	19
38	Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1464, 284-298.	2.6	55
39	Immunogenicity of in vitro folded outer membrane protein PorA of Neisseria meningitidis. FEMS Immunology and Medical Microbiology, 2000, 27, 227-233.	2.7	0
40	Non-lamellar Structure and Negative Charges of Lipopolysaccharides Required for Efficient Folding of Outer Membrane Protein PhoE of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 5114-5119.	3.4	75
41	Affinity of the periplasmic chaperone Skp ofEscherichia colifor phospholipids, lipopolysaccharides and non-native outer membrane proteins. FEBS Journal, 1999, 259, 96-103.	0.2	80
42	The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. Journal of Molecular Biology, 1999, 294, 1169-1179.	4.2	77
43	Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 1998, 27, 209-219.	2.5	223
44	Correlation between requirement for SecA during export and folding properties of precursor polypeptides. Molecular Microbiology, 1998, 27, 469-476.	2.5	6
45	Attacin - an insect immune protein - binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology (United Kingdom), 1998, 144, 2179-2188.	1.8	109
46	Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coliK-12. Journal of Molecular Biology, 1997, 269, 473-478.	4.2	81
47	Topology of the outer membrane phospholipase A of Salmonella typhimurium. Journal of Bacteriology, 1997, 179, 3443-3450.	2.2	23
48	The outer membrane component, YscC, of the Yop secretion machinery of <i>Yersinia enterocolitica</i> forms a ringâ€shaped multimeric complex. Molecular Microbiology, 1997, 26, 789-797.	2.5	232
49	The qmeA (ts) mutation of Escherichia coli is localized in the fabI gene, which encodes enoyl-ACP reductase. Research in Microbiology, 1996, 147, 609-613.	2.1	5
50	Lipopolysaccharides and divalent cations are involved in the formation of an assembly-competent intermediate of outer-membrane protein PhoE of E.coli EMBO Journal, 1996, 15, 5567-5573.	7.8	67
51	In Vitro Insertion and Assembly of Outer Membrane Protein PhoE of Escherichia coli K-12 into the Outer Membrane. Journal of Biological Chemistry, 1996, 271, 12885-12890.	3.4	45
52	In vitro assembly of outer membrane protein PhoE of E. coli , 1996, , 71-78.		0
53	Lipopolysaccharides and divalent cations are involved in the formation of an assembly-competent intermediate of outer-membrane protein PhoE of E.coli. EMBO Journal, 1996, 15, 5567-73.	7.8	21
54	Export and assembly of outer membrane proteins in E. coli. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1995, 4, 145-173.	0.3	2

HANS DE COCK

#	Article	IF	CITATIONS
55	Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. Journal of Bacteriology, 1994, 176, 642-650.	2.2	42
56	Detergent-Induced Folding of the Outer-Membrane Protein PhoE, a Pore Protein Induced by Phosphate Limitation. FEBS Journal, 1994, 226, 783-787.	0.2	27
57	Biogenesis of outer membrane protein PhoE of Escherichia coli. Journal of Molecular Biology, 1992, 224, 369-379.	4.2	47
58	Export and assembly of bacterial outer membrane proteins. Antonie Van Leeuwenhoek, 1992, 61, 81-85.	1.7	9
59	SecB-binding does not maintain the translocation-competent state of prePhoE. Molecular Microbiology, 1992, 6, 599-604.	2.5	37
60	Glycine-144 is required for efficient folding of outer membrane protein PhoE ofEscherichia coliK12. FEBS Letters, 1991, 279, 285-288.	2.8	8
61	Conservation of components of the export machinery in prokaryotes. FEMS Microbiology Letters, 1991, 80, 195-199.	1.8	17
62	In vitro trimerization of outer membrane protein PhoE. Biochimie, 1990, 72, 177-182.	2.6	30
63	Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration Journal of Biological Chemistry, 1990, 265, 4646-4651.	3.4	49
64	Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration. Journal of Biological Chemistry, 1990, 265, 4646-51.	3.4	51
65	Involvement of membrane lipids in protein export in Escherichia coli. Journal of Cell Science, 1989, 1989, 73-83.	2.0	7
66	Membrane biogenesis in Escherichia coli: effects of a secA mutation. Biochimica Et Biophysica Acta - Biomembranes, 1989, 985, 313-319.	2.6	17
67	Antigenic relatedness of a strongly immunogenic 65 kDA mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microbial Pathogenesis, 1988, 4, 71-83.	2.9	157