
Gyula Timinszky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/642475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929.	3.6	382
2	Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13770-13774.	3.3	322
3	A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nature Structural and Molecular Biology, 2013, 20, 508-514.	3.6	280
4	Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO Journal, 2013, 32, 1225-1237.	3.5	263
5	The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nature Structural and Molecular Biology, 2012, 19, 685-692.	3.6	214
6	Structures of Drosophila Cryptochrome and Mouse Cryptochrome1 Provide Insight into Circadian Function. Cell, 2013, 153, 1394-1405.	13.5	177
7	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	2.2	150
8	The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Molecular Biology of the Cell, 2016, 27, 3791-3799.	0.9	104
9	The recognition and removal of cellular poly(<scp>ADP</scp> â€ribose) signals. FEBS Journal, 2013, 280, 3491-3507.	2.2	102
10	A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene. Molecular Cell, 2017, 68, 860-871.e7.	4.5	70
11	The chromatin remodeler ALC1 underlies resistance to PARP inhibitor treatment. Science Advances, 2020, 6, .	4.7	70
12	MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Reports, 2018, 19, .	2.0	60
13	CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation. Nucleic Acids Research, 2018, 46, 6087-6098.	6.5	49
14	Macro domains as metabolite sensors on chromatin. Cellular and Molecular Life Sciences, 2013, 70, 1509-1524.	2.4	44
15	Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Nucleic Acids Research, 2019, 47, 11250-11267.	6.5	44
16	The importin-Î ² P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. Journal of Cell Science, 2002, 115, 1675-1687.	1.2	38
17	The importin-beta P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. Journal of Cell Science, 2002, 115, 1675-87.	1.2	31
18	Targeting actin inhibits repair of doxorubicin-induced DNA damage: a novel therapeutic approach for combination therapy. Cell Death and Disease, 2019, 10, 302.	2.7	29

GYULA TIMINSZKY

#	Article	IF	CITATIONS
19	The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats. Nucleic Acids Research, 2016, 44, 3105-3117.	6.5	28
20	Poly-ADP-ribosylation signaling during DNA damage repair. Frontiers in Bioscience - Landmark, 2015, 20, 440-457.	3.0	22
21	Repression of RNA Polymerase II Transcription by a Drosophila Oligopeptide. PLoS ONE, 2008, 3, e2506.	1.1	19
22	TARG1 protects against toxic DNA ADP-ribosylation. Nucleic Acids Research, 2021, 49, 10477-10492.	6.5	19
23	Long persistence of importin-β explains extended survival of cells and zygotes that lack the encoding gene. Mechanisms of Development, 2008, 125, 196-206.	1.7	17
24	ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Research, 2017, 45, 244-254.	6.5	16
25	Chromatin dynamics at DNA breaks: what, how and why?. AIMS Biophysics, 2015, 2, 458-475.	0.3	13
26	P446L-importin-β inhibits nuclear envelope assembly by sequestering nuclear envelope assembly factors to the microtubules. European Journal of Cell Biology, 2003, 82, 351-359.	1.6	10
27	Poly(ADP-Ribose)-Dependent Chromatin Remodeling in DNA Repair. Methods in Molecular Biology, 2017, 1608, 165-183.	0.4	8
28	Monitoring Poly(ADP-Ribosyl)ation in Response to DNA Damage in Live Cells Using Fluorescently Tagged Macrodomains. Methods in Molecular Biology, 2018, 1813, 11-24.	0.4	3
29	PARP1 and CBP lose their footing in cancer. Nature Structural and Molecular Biology, 2014, 21, 947-948.	3.6	1
30	Reversing ADP-ribosylation. ELife, 2017, 6, .	2.8	1