
Sebastian M Waldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6424716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing and validating a multivariable prediction model which predicts progression of intermediate to late age-related macular degeneration—the PINNACLE trial protocol. Eye, 2023, 37, 1275-1283.	2.1	9
2	Linking Function and Structure with ReSensNet. Ophthalmology Retina, 2022, 6, 501-511.	2.4	7
3	Impact of Intra- and Subretinal Fluid on Vision Based on Volume Quantification in the HARBOR Trial. Ophthalmology Retina, 2022, 6, 291-297.	2.4	14
4	Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography. Scientific Reports, 2021, 11, 5743.	3.3	13
5	A novel proline substitution (Arg201Pro) in alpha helix 8 of TMEM98 causes autosomal dominant nanophthalmos-4, closed angle glaucoma and attenuated visual acuity. Experimental Eye Research, 2021, 205, 108497.	2.6	3
6	Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye, 2021, , .	2.1	13
7	Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT. IEEE Transactions on Medical Imaging, 2020, 39, 87-98.	8.9	88
8	Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. British Journal of Ophthalmology, 2020, 104, 899-903.	3.9	5
9	TOPOGRAPHIC ANALYSIS OF PHOTORECEPTOR LOSS CORRELATED WITH DISEASE MORPHOLOGY IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 2148-2157.	1.7	21
10	MORPHOLOGICAL AND FUNCTIONAL CHARACTERISTICS AT THE ONSET OF EXUDATIVE CONVERSION IN AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 1070-1078.	1.7	11
11	Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning. Scientific Reports, 2020, 10, 12954.	3.3	22
12	Focal Scleral Nodule. Ophthalmology, 2020, 127, 1567-1577.	5.2	22
13	Characterization of Drusen and Hyperreflective Foci as Biomarkers for Disease Progression in Age-Related Macular Degeneration Using Artificial Intelligence in Optical Coherence Tomography. JAMA Ophthalmology, 2020, 138, 740.	2.5	99
14	Opportunistic deep learning of retinal photographs: the window to the body revisited. The Lancet Digital Health, 2020, 2, e269-e270.	12.3	1
15	Role of Deep Learning–Quantified Hyperreflective Foci for the Prediction of Geographic Atrophy Progression. American Journal of Ophthalmology, 2020, 216, 257-270.	3.3	48
16	Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning. Scientific Reports, 2020, 10, 5619.	3.3	21
17	Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina. Biomedical Optics Express, 2020, 11, 346.	2.9	36

Automated Analysis and Quantification of OCT Images. , 2020, , 79-87.

SEBASTIAN M WALDSTEIN

#	Article	IF	CITATIONS
19	U2-Net: A Bayesian U-Net Model With Epistemic Uncertainty Feedback For Photoreceptor Layer Segmentation In Pathological OCT Scans. , 2019, , .		34
20	f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 2019, 54, 30-44.	11.6	716
21	RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 1858-1874.	8.9	139
22	OCT fluid detection and quantification. , 2019, , 273-298.		1
23	Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data. IEEE Transactions on Medical Imaging, 2019, 38, 1037-1047.	8.9	67
24	Neuroretinal atrophy following resolution of macular oedema in retinal vein occlusion. British Journal of Ophthalmology, 2019, 103, 36-42.	3.9	13
25	Association of Changes in Macular Perfusion With Ranibizumab Treatment for Diabetic Macular Edema. JAMA Ophthalmology, 2018, 136, 315.	2.5	24
26	Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 24-30.	2.4	143
27	Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema. British Journal of Ophthalmology, 2018, 102, 195-203.	3.9	68
28	Sustained Benefits from Ranibizumab for Central Retinal Vein Occlusion with MacularÂEdema: 24-Month Results of the CRYSTAL Study. Ophthalmology Retina, 2018, 2, 134-142.	2.4	30
29	Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 2018, 125, 549-558.	5.2	384
30	Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. , 2018, 59, 3199.		144
31	Artificial intelligence in retina. Progress in Retinal and Eye Research, 2018, 67, 1-29.	15.5	469
32	Predicting Macular Edema Recurrence from Spatio-Temporal Signatures in Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging, 2017, 36, 1773-1783.	8.9	38
33	Neovascular Age-Related Macular Degeneration. , 2017, , 183-203.		0
34	Computational image analysis for prognosis determination in DME. Vision Research, 2017, 139, 204-210.	1.4	42
35	Evaluating the impact of vitreomacular adhesion on anti-VEGF therapy for retinal vein occlusion using machine learning. Scientific Reports, 2017, 7, 2928.	3.3	18
36	Sustained Benefits of Ranibizumab with or without Laser in Branch Retinal Vein Occlusion. Ophthalmology, 2017, 124, 1778-1787.	5.2	92

SEBASTIAN M WALDSTEIN

#	Article	IF	CITATIONS
37	Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomedical Optics Express, 2017, 8, 1874.	2.9	82
38	Analyzing and Predicting Visual Acuity Outcomes of Anti-VEGF Therapy by a Longitudinal Mixed Effects Model of Imaging and Clinical Data. , 2017, 58, 4173.		29
39	Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery. Journal of Ophthalmology, 2017, 2017, 1-8.	1.3	4
40	Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. , 2017, 58, BIO141.		87
41	Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. , 2017, 58, 3240.		128
42	Spatial Correspondence Between Intraretinal Fluid, Subretinal Fluid, and Pigment Epithelial Detachment in Neovascular Age-Related Macular Degeneration. , 2017, 58, 4039.		30
43	Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. Lecture Notes in Computer Science, 2017, , 146-157.	1.3	1,118
44	Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease. International Journal of Biomedical Imaging, 2016, 2016, 1-9.	3.9	16
45	Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	22
46	Improve synthetic retinal OCT images with present of pathologies and textural information. , 2016, , .		2
47	A novel benchmark model for intelligent annotation of spectral-domain optical coherence tomography scans using the example of cyst annotation. Computer Methods and Programs in Biomedicine, 2016, 130, 93-105.	4.7	9
48	Individualized Stabilization Criteria–Driven Ranibizumab versus Laser in Branch Retinal Vein Occlusion. Ophthalmology, 2016, 123, 1332-1344.	5.2	76
49	Morphology and Visual Acuity in Aflibercept and Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration in the VIEW Trials. Ophthalmology, 2016, 123, 1521-1529.	5.2	124
50	Individualized Ranibizumab Regimen Driven by Stabilization Criteria for Central Retinal Vein Occlusion. Ophthalmology, 2016, 123, 1101-1111.	5.2	84
51	Correlation of 3-Dimensionally Quantified Intraretinal and Subretinal Fluid With Visual Acuity in Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 182.	2.5	80
52	Geodesic denoising for optical coherence tomography images. , 2016, , .		0
53	Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation. British Journal of Ophthalmology, 2016, 100, 1372-1376.	3.9	34
54	Choroidal Line Scan Measurements in Swept-Source Optical Coherence Tomography as Surrogates for Volumetric Thickness Assessment. American Journal of Ophthalmology, 2016, 162, 150-158.e1.	3.3	5

SEBASTIAN M WALDSTEIN

#	Article	IF	CITATIONS
55	Predictive Value of Retinal Morphology forÂVisual Acuity Outcomes of Different Ranibizumab Treatment Regimens for Neovascular AMD. Ophthalmology, 2016, 123, 60-69.	5.2	97
56	A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Progress in Retinal and Eye Research, 2016, 50, 1-24.	15.5	284
57	Multivariate Model of the Intersubject Variability of the Retinal Nerve Fiber Layer Thickness in Healthy Subjects. , 2015, 56, 5290.		15
58	Pigment Epithelial Detachment Followed byÂRetinal Cystoid Degeneration Leads toÂVision Loss in Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2015, 122, 822-832.	5.2	170
59	Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. British Journal of Ophthalmology, 2015, 99, 794-800.	3.9	34
60	Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion. Proceedings of SPIE, 2015, , .	0.8	1
61	A focus on the imaging of the retina. Expert Review of Ophthalmology, 2015, 10, 595-611.	0.6	1
62	Spatio-Temporal Signatures to Predict Retinal Disease Recurrence. Lecture Notes in Computer Science, 2015, 24, 152-163.	1.3	16
63	Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. Lecture Notes in Computer Science, 2015, 24, 437-448.	1.3	64
64	Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices. Proceedings of SPIE, 2014, , .	0.8	0
65	Three-Dimensional Automated Choroidal Volume Assessment on Standard Spectral-Domain Optical Coherence Tomography and Correlation With the Level ofÂDiabetic Macular Edema. American Journal of Ophthalmology, 2014, 158, 1039-1048.e1.	3.3	70
66	Impact of Vitreomacular Adhesion on Ranibizumab Mono- and Combination Therapy for Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 2014, 158, 328-336.e1.	3.3	35
67	Motion Artefact Correction in Retinal Optical Coherence Tomography Using Local Symmetry. Lecture Notes in Computer Science, 2014, 17, 130-137.	1.3	23
68	Influence of the Vitreomacular Interface onÂOutcomes of Ranibizumab Therapy inÂNeovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 2620-2629.	5.2	74
69	INFLUENCE OF VITREOMACULAR ADHESION ON THE DEVELOPMENT OF EXUDATIVE AGE-RELATED MACULAR DEGENERATION. Retina, 2012, 32, 424-433.	1.7	22
70	Stable registration of pathological 3D-OCT scans using retinal vessels. , 0, , .		9
71	Predicting Drusen Regression from OCT in Patients with Age-Related Macular Degeneration. , 0, , .		1