
David A Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6424279/publications.pdf Version: 2024-02-01

Πλυίο Δ Cadted

#	Article	IF	CITATIONS
1	Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis. Journal of Chemical Neuroanatomy, 2017, 82, 29-38.	2.1	4
2	Cellular distribution of Egr1 transcription in the male rat pituitary gland. Journal of Molecular Endocrinology, 2014, 53, 271-280.	2.5	5
3	Postnatal Dynamics of Zeb2 Expression in Rat Brain: Analysis of Novel 3′ UTR Sequence Reveals a miR-9 Interacting Site. Journal of Molecular Neuroscience, 2014, 52, 138-147.	2.3	5
4	Neuronal expression of SOX2 is enriched in specific hypothalamic cell groups. Journal of Chemical Neuroanatomy, 2014, 61-62, 153-160.	2.1	24
5	A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat-Wilson syndrome phenotypes. Human Molecular Genetics, 2012, 21, 5429-5442.	2.9	26
6	Transcription Mapping of Embryonic Rat Brain Reveals EGR-1 Induction in SOX2+ Neural Progenitor Cells. Frontiers in Molecular Neuroscience, 2011, 4, 6.	2.9	21
7	Global daily dynamics of the pineal transcriptome. Cell and Tissue Research, 2011, 344, 1-11.	2.9	21
8	Selective Genomic Targeting by FRA-2/FOSL2 Transcription Factor. Journal of Biological Chemistry, 2011, 286, 15227-15239.	3.4	22
9	Pineal function: Impact of microarray analysis. Molecular and Cellular Endocrinology, 2010, 314, 170-183.	3.2	43
10	Enhanced tonic GABAA inhibition in typical absence epilepsy. Nature Medicine, 2009, 15, 1392-1398.	30.7	362
11	Night/Day Changes in Pineal Expression of >600 Genes. Journal of Biological Chemistry, 2009, 284, 7606-7622.	3.4	130
12	Pineal gland expression of the transcription factor Egr-1 is restricted to a population of glia that are distinct from nestin-immunoreactive cells. Journal of Molecular Histology, 2008, 39, 69-75.	2.2	3
13	A novel site of adult doublecortin expression: neuropeptide neurons within the suprachiasmatic nucleus circadian clock. BMC Neuroscience, 2008, 9, 2.	1.9	38
14	Rhythmic expression of an egr-1 transgene in rats distinguishes two populations of photoreceptor cells in the retinal outer nuclear layer. Molecular Vision, 2008, 14, 1176-86.	1.1	6
15	Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland. Molecular and Cellular Endocrinology, 2007, 270, 43-49.	3.2	15
16	Cellular transcriptomics – the next phase of endocrine expression profiling. Trends in Endocrinology and Metabolism, 2006, 17, 192-198.	7.1	10
17	Nucleus-Specific Abnormalities of GABAergic Synaptic Transmission in a Genetic Model of Absence Seizures. Journal of Neurophysiology, 2006, 96, 3074-3081.	1.8	72
18	A <i>TASK3</i> Channel (<i>KCNK9</i>) Mutation in a Genetic Model of Absence Epilepsy. Journal of Molecular Neuroscience, 2005, 25, 037-052.	2.3	26

#	Article	lF	CITATIONS
19	Identification of Two Further Splice Variants of <i>GABABR1</i> Characterizes the Conserved Micro-Exon 4 as a Hot Spot for Regulated Splicing in the Rat Brain. Journal of Molecular Neuroscience, 2005, 26, 099-108.	2.3	14
20	A Novel Pineal-specific Product of the Oligopeptide Transporter PepT1 Gene. Journal of Biological Chemistry, 2005, 280, 16851-16860.	3.4	32
21	Photic Stimulation Inhibits Growth Hormone Secretion in Rats: A Hypothalamic Mechanism for Transient Entrainment. Endocrinology, 2004, 145, 2950-2958.	2.8	19
22	Manipulating sorting signals to generate co-expression of somatostatin and eGFP in the regulated secretory pathway from a monocistronic construct. Journal of Molecular Endocrinology, 2004, 33, 523-532.	2.5	5
23	NGFI-B (Nurr77/Nr4a1) orphan nuclear receptor in rat pinealocytes: circadian expression involves an adrenergic-cyclic AMP mechanism. Journal of Neurochemistry, 2004, 91, 946-955.	3.9	38
24	Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genetics, 2004, 36, 1065-1071.	21.4	942
25	Comprehensive strategies to study neuronal function in transgenic animal models. Biological Psychiatry, 2004, 55, 785-788.	1.3	8
26	Mitogen-activated protein kinase phosphatase-1 (MKP-1): >100-fold nocturnal and norepinephrine-induced changes in the rat pineal gland. FEBS Letters, 2004, 577, 220-226.	2.8	27
27	Circadian dependency of nocturnal immediate-early protein induction in rat retina. Biochemical and Biophysical Research Communications, 2004, 320, 551-556.	2.1	20
28	Selecting candidate genes from DNA array screens: application to neuroscience. Methods, 2003, 31, 263-264.	3.8	4
29	Genetic Targeting. Journal of Neurochemistry, 2002, 73, 1343-1349.	3.9	36
30	ld-1 expression defines a subset of vimentin/S-100beta-positive, GFAP-negative astrocytes in the adult rat pineal gland. The Histochemical Journal, 2002, 34, 167-171.	0.6	15
31	Species- and tissue-specific physiological regulation of vasopressin mRNA poly(A) tail length. Physiological Genomics, 2001, 5, 1-9.	2.3	6
32	Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy?. Journal of Neuroscience Methods, 2001, 108, 111-130.	2.5	42
33	Optimisation of methods for selecting candidate genes from cDNA array screens: application to rat brain punches and pineal. Journal of Neuroscience Methods, 2001, 112, 173-184.	2.5	13
34	Nocturnal Light Pulses Selectively InduceEgr-1/NGFI-A Protein in PeriventricularHypophysiotrophic Somatostatinergic Neurons. Journal of Molecular Neuroscience, 2001, 17, 271-278.	2.3	9
35	Tissue-Specific Transgenic Knockdown of Fos-Related Antigen 2 (Fra-2) Expression Mediated by Dominant Negative Fra-2. Molecular and Cellular Biology, 2001, 21, 3704-3713.	2.3	51
36	The transactivationâ€competent carboxylâ€ŧerminal domain of AFâ€9 is expressed within a sexually dimorphic transcript in rat pituitary. FASEB Journal, 2000, 14, 1109-1116.	0.5	3

#	Article	IF	CITATIONS
37	Regulation of the synthesis and secretion of vasopressin. Progress in Brain Research, 1999, 119, 137-143.	1.4	12
38	Expression of a novel rat protein tyrosine phosphatase gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 405-408.	2.4	8
39	Modulation of cellular AP-1 DNA binding activity by heat shock proteins. FEBS Letters, 1997, 416, 81-85.	2.8	23
40	Transcription of the vasoactive intestinal peptide gene in response to glucocorticoids: differential regulation of alternative transcripts is modulated by a labile protein in rat anterior pituitary. Molecular and Cellular Endocrinology, 1997, 130, 83-91.	3.2	7
41	Repression of vasopressin gene expression by glucocorticoids in transgenic mice: evidence of a direct mechanism mediated by proximal 5′ flanking sequence. Neuroscience, 1997, 78, 1177-1185.	2.3	32
42	Trans-synaptic control of NGFI-A and jun-B expression: contrasting transcriptional and post-transcriptional mechanisms directed by common receptors. Neuroscience Letters, 1996, 206, 41-44.	2.1	6
43	Tonic suppression of adrenal AP-1 activity by glucocorticoids. Molecular and Cellular Endocrinology, 1996, 122, 151-158.	3.2	11
44	Circadian rhythms and autoregulatory transcription loops—going round in circles?. Molecular and Cellular Endocrinology, 1996, 124, 1-5.	3.2	7
45	RNAs encoded by a 3.5-kb bovine vasopressin gene construct are targeted to the neurohypophysis of transgenic mice. Molecular Brain Research, 1996, 42, 287-292.	2.3	5
46	In situ hybridization analysis of vasopressin mRNA expression in the mouse hypothalamus: Diurnal variation in the suprachiasmatic nucleus. Journal of Chemical Neuroanatomy, 1996, 12, 105-112.	2.1	7
47	Anterior pituitary vasoactive intestinal peptide mRNA is colocalised with prolactin mRNA in hyperoestrogenised rats. Journal of Molecular Endocrinology, 1996, 16, 211-220.	2.5	12
48	Expression of leukaemia inhibitory factor/cholinergic differentiation factor is linked to adrenoceptor stimulation. Biochemical Society Transactions, 1995, 23, 114S-114S.	3.4	8
49	Leukaemia Inhibitory Factor Expression in Cultured Rat Anterior Pituitary is Regulated by Glucocorticoids. Journal of Neuroendocrinology, 1995, 7, 623-628.	2.6	15
50	Bovine Oxytocin Transgenes in Mice. Journal of Biological Chemistry, 1995, 270, 27199-27205.	3.4	19
51	Over-expression of oxytocin in the testes of a transgenic mouse model. Journal of Endocrinology, 1994, 140, 53-62.	2.6	30
52	Cell Specific Expression of a Vasopressin Transgene in Rats. Journal of Neuroendocrinology, 1994, 6, 469-477.	2.6	54
53	Alternatively polyadenylated vasoactive intestinal peptide mRNAs are differentially regulated at the level of stability. Molecular Endocrinology, 1994, 8, 603-613.	3.7	15
54	Regulation of vasopressin gene expression: Changes in the level, but not the size, of vasopressin mRNA following endocrine manipulations. Cellular and Molecular Neurobiology, 1993, 13, 87-95.	3.3	19

#	Article	IF	CITATIONS
55	In vitro Regulation of Rat Prolactin Messenger Ribonucleic Acid Poly(A) Tail Length: Modulation by Bromocriptine. Journal of Neuroendocrinology, 1993, 5, 201-204.	2.6	9
56	Regulation of Vasopressin (VP) Gene Expression in the Bed Nucleus of the Stria Terminalis: Gonadal Steroid-Dependent Changes in VP mRNA Accumulation are Associated with Alterations in mRNA Poly (A) Tail Length but are Independent of the Rate of VP Gene Transcription. Journal of Neuroendocrinology, 1993, 5, 509-515.	2.6	20
57	Noradrenergic regulation of c-jun expression in the rat pineal gland in culture: positive and negative components. European Journal of Pharmacology, 1993, 247, 97-100.	2.6	4
58	Differential intracellular mechanisms mediate the co-ordinate induction of c-fos and jun-B in the rat pineal gland. European Journal of Pharmacology, 1993, 244, 285-291.	2.6	12
59	Neurohypophyseal peptides as regulators of growth and development. Journal of Molecular Neuroscience, 1993, 4, 11-19.	2.3	12
60	Collection of Fertilized One-Cell Mouse Eggs for Microinjection. , 1993, 18, 145-150.		0
61	Anesthetizing Mice. , 1993, 18, 135-136.		2
62	Preparation of Culture Media for Fertilized One-Cell Mouse Eggs. , 1993, 18, 141-144.		1
63	Acute down-regulation of oxytocin and vasopressin mRNA levels following metrazole-induced seizure in the rat. Neuroscience Letters, 1993, 160, 135-138.	2.1	7
64	Osmotic stimuli attenuate vasoactive intestinal peptide gene expression in the rat anterior pituitary gland. Molecular and Cellular Endocrinology, 1993, 92, 9-14.	3.2	3
65	Regulation of the extent of polyadenylation of vasopressin and growth hormone mRNAs in response to physiological stimuli. Regulatory Peptides, 1993, 45, 37-41.	1.9	10
66	The influence of interleukin-2 on vasopressin and oxytocin gene expression in the rodent hypothalamus. Journal of Neuroimmunology, 1993, 42, 131-138.	2.3	27
67	Extrahypothalamic Expression of the Vasopressin and Oxytocin Genes. Annals of the New York Academy of Sciences, 1993, 689, 91-106.	3.8	26
68	Establishing a Colony for Efficient Production of Transgenic Mice. , 1993, 18, 125-130.		0
69	Delivery of Microinjected Eggs to Surrogate Mothers by Oviduct Transfer. , 1993, 18, 169-176.		0
70	Introduction to Transgenesis. , 1993, 18, 3-6.		1
71	Transgenic Rodents and the Study of the Central Nervous System. , 1993, 18, 7-22.		3
72	An Overview of Transgenic Mouse Production. , 1993, 18, 111-114.		4

An Overview of Transgenic Mouse Production. , 1993, 18, 111-114. 72

#	Article	IF	CITATIONS
73	Chapter 7 Neuropeptide gene expression in transgenic animals. Progress in Brain Research, 1992, 92, 77-96.	1.4	8
74	Transgenic approaches to modifying cell and tissue function. Current Opinion in Cell Biology, 1992, 4, 274-279.	5.4	11
75	Neurotransmitter-stimulated immediate-early gene responses are organized through differential post-synaptic receptor mechanisms. Molecular Brain Research, 1992, 16, 111-118.	2.3	40
76	Nuclear mechanisms mediate rhythmic changes in vasopressin mRNA expression in the rat suprachiasmatic nucleus. Molecular Brain Research, 1992, 12, 315-321.	2.3	52
77	Decrease in hypothalamic vasopressin mRNA poly(A) tail length following physiological stimulation. Cellular and Molecular Neurobiology, 1992, 12, 557-567.	3.3	11
78	Transgenic approaches to modifying cell and tissue function. Current Biology, 1992, 2, 192.	3.9	0
79	Differential Use of 3'Poly(A) Addition Sites in Vasoactive Intestinal Peptide Messenger Ribonucleic Acid of the Rat Anterior Pituitary Gland. Journal of Neuroendocrinology, 1991, 3, 351-355.	2.6	20
80	Vasopressin and Oxytocin Gene Expression in Rat Testis*. Endocrinology, 1991, 128, 2118-2128.	2.8	92
81	Testicular Oxytocin Gene Expression in Seminiferous Tubules of Cattle and Transgenic Mice*. Endocrinology, 1991, 128, 2110-2117.	2.8	59
82	Rapid Changes in Poly (A) Tail Length of Vasopressin and Oxytocin mRNAs Form a Common Early Component of Neurohypophyseal Peptide Gene Activation following Physiological Stimulation. Neuroendocrinology, 1991, 53, 1-6.	2.5	65
83	The Origin and Regulation of Posterior Pituitary Vasopressin Ribonucleic Acid in Osmotically Stimulated Rats. Journal of Neuroendocrinology, 1990, 2, 329-334.	2.6	31
84	Regulation of c-fos and c-jun expression in the rat supraoptic nucleus. Cellular and Molecular Neurobiology, 1990, 10, 435-445.	3.3	58
85	Vasopressin Gene Expression in the Rodent Hypothalamus: Transcriptional and Posttranscriptional Responses to Physiological Stimulation. Molecular Endocrinology, 1990, 4, 1051-1059.	3.7	112
86	Dopaminergic Mediation of Physiological Changes in Proopiomelanocortin Messenger Ribonucleic Acid Expression in the Neurointermediate Lobe of the Rat Pituitary. Endocrinology, 1990, 126, 2960-2964.	2.8	24
87	Vasopressin mRNA in parvocellular neurons of the rat suprachiasmatic nucleus exhibits increased poly(A) tail length following water deprivation. Neuroscience Letters, 1990, 109, 180-185.	2.1	16
88	Temporally defined induction of c-fos in the rat pineal. Biochemical and Biophysical Research Communications, 1990, 166, 589-594.	2.1	24
89	Cyclic nucleotide dynamics in the rat hypothalamus during osmotic stimulation: in vivo and in vitro studies. Brain Research, 1989, 487, 350-356.	2.2	68
90	Diurnal rhythm of vasopressin mRNA species in the rat suprachiasmatic nucleus: independence of neuroendocrine modulation and maintenance in explant culture. Molecular Brain Research, 1989, 6, 233-239.	2.3	47

#	Article	IF	CITATIONS
91	Vasopressin RNA in the neural lobe of the pituitary: dramatic accumulation in response to salt loading Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9002-9005.	7.1	85
92	Oxytocin Responses to Stress in Lactating and Hyperprolactinaemic Rats. Neuroendocrinology, 1987, 46, 532-537.	2.5	97
93	Neonatal Administration of a Specific Neuropeptide Y Antiserum Alters the Vasopressin Response to Haemorrhage and the Hypothalamic Content of Noradrenaline in Rats. Neuroendocrinology, 1987, 45, 507-509.	2.5	12
94	Comparative distribution and cardiovascular actions of substance P and substance K within the nucleus tractus solitarius of rats. Neuropeptides, 1986, 8, 295-304.	2.2	11
95	Cardio-respiratory actions of substance P, TRH and 5-HT in the nucleus tractus solitarius of rats: Evidence for functional interactions of neuropeptides and amine neurotransmitters. Neuropeptides, 1985, 6, 425-436.	2.2	60
96	The relationship between opiate concentration and cellular activity in the pars distalis and neurointermediate lobe of the eel pituitary. General and Comparative Endocrinology, 1980, 41, 225-232.	1.8	10