Thomas Eggermann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6424109/thomas-eggermann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 239
 5,007
 39
 61

 papers
 citations
 h-index
 g-index

 250
 6,047
 4.6
 5.55

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
239	Novel homozygous nonsense mutation in the P5PN-1 coding gene as an alternative cause for hereditary anemia with basophilic stippling <i>Clinical Case Reports (discontinued)</i> , 2022 , 10, e05501	0.7	
238	Childhood adversity and approach/avoidance-related behaviour in boys <i>Journal of Neural Transmission</i> , 2022 , 129, 421	4.3	
237	Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences <i>Clinical Epigenetics</i> , 2022 , 14, 41	7.7	O
236	Microdeletions in 1q21 and 8q12.1 depict two additional molecular subgroups of Silver-Russell syndrome like phenotypes <i>Molecular Cytogenetics</i> , 2022 , 15, 19	2	1
235	Corrigendum to: Clinical spectrum and management of imprinting disorders. <i>Medizinische Genetik</i> , 2021 , 33, 61-63	0.5	
234	Paternal 132 bp deletion affecting in 11p15.5 is associated with growth retardation but does not affect imprinting. <i>Journal of Medical Genetics</i> , 2021 , 58, 173-176	5.8	2
233	Balance between macrophage migration inhibitory factor and sCD74 predicts outcome in patients with acute decompensation of cirrhosis. <i>JHEP Reports</i> , 2021 , 3, 100221	10.3	2
232	Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. <i>Genes</i> , 2021 , 12,	4.2	10
231	C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	2
230	Overgrowth-associated partial trisomy 15q24.3-qter and mosaic 11p15.5 duplication involving Silver-Russell region in a patient with lateralized asymmetry and developmental delay. <i>Clinical Dysmorphology</i> , 2021 , 30, 189-193	0.9	0
229	Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family. <i>European Journal of Human Genetics</i> , 2021 , 29, 575-580	5.3	12
228	Deletion of 16q22.2q23.3 in a Boy with a Phenotype Reminiscent of Silver-Russell Syndrome. <i>Molecular Syndromology</i> , 2021 , 12, 300-304	1.5	0
227	Unusual deletion of the maternal 11p15 allele in Beckwith-Wiedemann syndrome with an impact on both imprinting domains. <i>Clinical Epigenetics</i> , 2021 , 13, 30	7.7	2
226	Molecular pathophysiology of human MICU1 deficiency. <i>Neuropathology and Applied Neurobiology</i> , 2021 , 47, 840-855	5.2	2
225	Maternal Effect Mutations: A Novel Cause for Human Reproductive Failure. <i>Geburtshilfe Und Frauenheilkunde</i> , 2021 , 81, 780-788	2	2
224	Germline variants in DNA repair genes, including BRCA1/2, may cause familial myeloproliferative neoplasms. <i>Blood Advances</i> , 2021 , 5, 3373-3376	7.8	2
223	One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. <i>Orphanet Journal of Rare Diseases</i> , 2021 , 16, 42	4.2	5

(2020-2020)

222	Prenatal Detection of Uniparental Disomies (UPD): Intended and Incidental Finding in the Era of Next Generation Genomics. <i>Genes</i> , 2020 , 11,	4.2	6
221	HMGA2 Variants in Silver-Russell Syndrome: Homozygous and Heterozygous Occurrence. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2020 , 105,	5.6	8
220	Frequency of KCNQ1 variants causing loss of methylation of Imprinting Centre 2 in Beckwith-Wiedemann syndrome. <i>Clinical Epigenetics</i> , 2020 , 12, 63	7.7	5
219	Cancer incidence and spectrum among children with genetically confirmed Beckwith-Wiedemann spectrum in Germany: a retrospective cohort study. <i>British Journal of Cancer</i> , 2020 , 123, 619-623	8.7	14
218	Genetic testing in inherited endocrine disorders: joint position paper of the European reference network on rare endocrine conditions (Endo-ERN). <i>Orphanet Journal of Rare Diseases</i> , 2020 , 15, 144	4.2	7
217	Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype. <i>PLoS ONE</i> , 2020 , 15, e0230003	3.7	6
216	Genetic barcoding reveals clonal dominance in iPSC-derived mesenchymal stromal cells. <i>Stem Cell Research and Therapy</i> , 2020 , 11, 105	8.3	4
215	Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. <i>Human Reproduction Update</i> , 2020 , 26, 197-213	15.8	30
214	upd(20)mat is a rare cause of the Silver-Russell-syndrome-like phenotype: Two unrelated cases and screening of large cohorts. <i>Clinical Genetics</i> , 2020 , 97, 902-907	4	6
213	Imprinting disorders: novel findings and translation into diagnostics and management. <i>Medizinische Genetik</i> , 2020 , 32, 295-296	0.5	
212	Clinical spectrum and management of imprinting disorders. <i>Medizinische Genetik</i> , 2020 , 32, 321-334	0.5	1
211	Molecular testing for imprinting disorders. <i>Medizinische Genetik</i> , 2020 , 32, 305-319	0.5	1
210	Molecular characterization of temple syndrome families with 14q32 epimutations. <i>European Journal of Medical Genetics</i> , 2020 , 63, 104077	2.6	1
209	Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. <i>Hormone Research in Paediatrics</i> , 2020 , 93, 182-196	3.3	16
208	Novel mutation points to a hot spot in CDKN1C causing Silver-Russell syndrome. <i>Clinical Epigenetics</i> , 2020 , 12, 152	7.7	5
207	Inherited cases of CNOT3-associated intellectual developmental disorder with speech delay, autism, and dysmorphic facies. <i>Clinical Genetics</i> , 2020 , 98, 408-412	4	1
206	Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important. <i>Journal of Molecular Medicine</i> , 2020 , 98, 1447-1455	5.5	8
205	Patient with an autosomal-recessive MBTPS1-linked phenotype and clinical features of Silver-Russell syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2020 , 182, 2727-2730	2.5	4

204	Heterogeneous phenotypes in families with duplications of the paternal allele within the imprinting center 1 (H19/IGF2:TSS-DMR) in 11p15.5. <i>Clinical Genetics</i> , 2020 , 98, 418-419	4	0
203	Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype 2020 , 15, e0230003		
202	Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype 2020 , 15, e0230003		
201	Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype 2020 , 15, e0230003		
200	Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype 2020 , 15, e0230003		
199	Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	3
198	Contribution of GRB10 to the prenatal phenotype in Silver-Russell syndrome? Lessons from 7p12 copy number variations. <i>European Journal of Medical Genetics</i> , 2019 , 62, 103671	2.6	4
197	Serotonergic Contributions to Human Brain Aggression Networks. <i>Frontiers in Neuroscience</i> , 2019 , 13, 42	5.1	10
196	Discrepant molecular and clinical diagnoses in Beckwith-Wiedemann and Silver-Russell syndromes. <i>Genetical Research</i> , 2019 , 101, e3	1.1	9
195	Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. <i>Clinical Epigenetics</i> , 2019 , 11, 30	7.7	10
194	Multilocus Methylation Assays in Epigenetics 2019 , 2181-2202		
193	Male infant with paternal uniparental diploidy mosaicism and a 46,XX/46,XY karyotype. <i>American Journal of Medical Genetics, Part A</i> , 2019 , 179, 2252-2256	2.5	3
192	Genetic Variants in the Promoter Region of the Macrophage Migration Inhibitory Factor are Associated with the Severity of Hepatitis C Virus-Induced Liver Fibrosis. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	2
191	Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. <i>Journal of Clinical Investigation</i> , 2019 , 129, 5123-5136	15.9	16
190	Search for cis-acting factors and maternal effect variants in Silver-Russell patients with ICR1 hypomethylation and their mothers. <i>European Journal of Human Genetics</i> , 2019 , 27, 42-48	5.3	11
189	Next generation sequencing and imprinting disorders: Current applications and future perspectives: Lessons from Silver-Russell syndrome. <i>Molecular and Cellular Probes</i> , 2019 , 44, 1-7	3.3	9
188	Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. <i>Nature Reviews Genetics</i> , 2019 , 20, 235-248	30.1	151
187	Molecular and clinical studies in 8 patients with Temple syndrome. <i>Clinical Genetics</i> , 2018 , 93, 1179-118	884	14

(2017-2018)

, 5.3	7
15.2	234
4.7	17
5.8	66
5.7	50
4	17
3.4	1
1.7	3
al 2.7	6
2.7	5
5.7	7
2.3	2
al 15.2	132
4	14
5.3	21
3.6	13
5.3	34
	15.2 4.7 5.8 5.7 4 3.4 1.7 2.7 9 2.7 5.7 2.3 al 15.2 4 5.3 3.6

168	Maternal uniparental disomy of chromosome 16 [upd(16)mat]: clinical features are rather caused by (hidden) trisomy 16 mosaicism than by upd(16)mat itself. <i>Clinical Genetics</i> , 2017 , 92, 45-51	4	20
167	Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion. <i>Human Brain Mapping</i> , 2017 , 38, 1622-1635	5.9	13
166	The Diagnostic Value of IGF-2 and the IGF/IGFBP-3 System in Silver-Russell Syndrome. <i>Hormone Research in Paediatrics</i> , 2017 , 88, 201-207	3.3	5
165	Formation of upd(7)mat by trisomic rescue: SNP array typing provides new insights in chromosomal nondisjunction. <i>Molecular Cytogenetics</i> , 2017 , 10, 28	2	8
164	Diagnostik und Therapie des Silver-Russell-Syndroms. <i>Monatsschrift Fur Kinderheilkunde</i> , 2017 , 165, 89	5-9024	
163	The maternal uniparental disomy of chromosome 6[[upd(6)mat] "phenotype": result of placental trisomy[6]mosaicism?. <i>Molecular Genetics & amp; Genomic Medicine</i> , 2017 , 5, 668-677	2.3	13
162	Uniparental disomy as an unexpected cause of Meckel-Gruber syndrome: report of a case. <i>Pediatric Nephrology</i> , 2017 , 32, 1989-1992	3.2	6
161	Diagnosis and management of Silver-Russell syndrome: first international consensus statement. <i>Nature Reviews Endocrinology</i> , 2017 , 13, 105-124	15.2	224
160	Recent Advances in Imprinting Disorders. <i>Clinical Genetics</i> , 2017 , 91, 3-13	4	62
159	Imprinting Disorders in Humans 2017 , 581-592		
159 158	Imprinting Disorders in Humans 2017 , 581-592 Multilocus Methylation Assays in Epigenetics 2017 , 1-22		
		8.1	52
158	Multilocus Methylation Assays in Epigenetics 2017 , 1-22 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure.	8.1	5 ²
158 157	Multilocus Methylation Assays in Epigenetics 2017 , 1-22 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. <i>Genetics in Medicine</i> , 2016 , 18, 309-15 DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic		
158 157 156	Multilocus Methylation Assays in Epigenetics 2017, 1-22 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. <i>Genetics in Medicine</i> , 2016, 18, 309-15 DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. <i>American Journal of Human Genetics</i> , 2016, 99, 555-566 Microdeletions of the 7q32.2 imprinted region are associated with Silver-Russell syndrome	11	41
158 157 156 155	Multilocus Methylation Assays in Epigenetics 2017, 1-22 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. <i>Genetics in Medicine</i> , 2016, 18, 309-15 DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. <i>American Journal of Human Genetics</i> , 2016, 99, 555-566 Microdeletions of the 7q32.2 imprinted region are associated with Silver-Russell syndrome features. <i>American Journal of Medical Genetics</i> , Part A, 2016, 170, 743-9 Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation.	2.5	41
158 157 156 155	Multilocus Methylation Assays in Epigenetics 2017, 1-22 Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. <i>Genetics in Medicine</i> , 2016, 18, 309-15 DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. <i>American Journal of Human Genetics</i> , 2016, 99, 555-566 Microdeletions of the 7q32.2 imprinted region are associated with Silver-Russell syndrome features. <i>American Journal of Medical Genetics</i> , Part A, 2016, 170, 743-9 Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation. <i>Clinical Epigenetics</i> , 2016, 8, 47	11 2.5 7.7	41 14 10

(2015-2016)

150	MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. <i>NeuroImage</i> , 2016 , 125, 378-385	7.9	36
149	Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: a challenge for molecular analysis and genetic counseling. <i>European Journal of Human Genetics</i> , 2016 , 24, 784-93	5.3	34
148	Autosomal dominant spinal muscular atrophy with lower extremity predominance: A recognizable phenotype of BICD2 mutations. <i>Muscle and Nerve</i> , 2016 , 54, 496-500	3.4	18
147	Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. <i>Trends in Genetics</i> , 2016 , 32, 444-455	8.5	51
146	EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver-Russell and Beckwith-Wiedemann syndrome. <i>European Journal of Human Genetics</i> , 2016 , 24, 1377-87	5.3	54
145	No major contribution of IGF2 variants to the etiology of sporadic 11p15-associated imprinting disorders. <i>American Journal of Medical Genetics, Part A</i> , 2016 , 170A, 283-4	2.5	3
144	Clinical utility gene card for: Proximal spinal muscular atrophy (SMA) - update 2015. <i>European Journal of Human Genetics</i> , 2015 , 23,	5.3	4
143	Paternally Inherited IGF2 Mutation and Growth Restriction. <i>New England Journal of Medicine</i> , 2015 , 373, 349-56	59.2	139
142	Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care. <i>Clinical Epigenetics</i> , 2015 , 7, 23	7.7	19
141	Chromosom 14-assoziierte Imprintingsyndrome [Temple- und Kagami-Ogata-Syndrome. <i>Medizinische Genetik</i> , 2015 , 27, 247-253	0.5	2
140	Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. <i>Nature Communications</i> , 2015 , 6, 8086	17.4	102
139	Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. <i>Molecular and Cellular Probes</i> , 2015 , 29, 282-90	3.3	10
138	Multilocus methylation defects in imprinting disorders. <i>Biomolecular Concepts</i> , 2015 , 6, 47-57	3.7	31
137	Mosaicism and uniparental disomy in prenatal diagnosis. <i>Trends in Molecular Medicine</i> , 2015 , 21, 77-87	11.5	69
136	Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. <i>European Journal of Human Genetics</i> , 2015 , 23, 180-8	5.3	37
135	Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. <i>Clinical Epigenetics</i> , 2015 , 7, 123	7.7	115
134	A familial GLI2 deletion (2q14.2) not associated with the holoprosencephaly syndrome phenotype. <i>American Journal of Medical Genetics, Part A</i> , 2015 , 167A, 1121-4	2.5	10
133	Adult phenotype of Russell-Silver syndrome: A molecular support for Barker-Brennerß theory. <i>Congenital Anomalies (discontinued)</i> , 2015 , 55, 167-9	1.1	14

132	In vivo investigations of the effect of short- and long-term recombinant growth hormone treatment on DNA-methylation in humans. <i>PLoS ONE</i> , 2015 , 10, e0120463	3.7	7
131	Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. <i>Molecular and Cellular Probes</i> , 2015 , 29, 299-307	3.3	19
130	The Frequency of Methylation Abnormalities Among Estonian Patients Selected by Clinical Diagnostic Scoring Systems for Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome. <i>Genetic Testing and Molecular Biomarkers</i> , 2015 , 19, 684-91	1.6	8
129	Fundamental Aspects of Epigenetic in Cancer 2015 , 1-33		
128	Epigenetik. <i>Gynakologische Endokrinologie</i> , 2014 , 12, 74-78	0.1	О
127	Isolated hypermethylation of GRB10 (7p12.2) in a Silver-Russell syndrome patient carrying a 20p13 microdeletion. <i>Clinical Genetics</i> , 2014 , 85, 399-400	4	7
126	Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. <i>Journal of Molecular Medicine</i> , 2014 , 92, 769-77	5.5	42
125	Uniparentale Disomien und Mosaike. <i>Medizinische Genetik</i> , 2014 , 26, 315-323	0.5	
124	CDKN1C mutations: two sides of the same coin. <i>Trends in Molecular Medicine</i> , 2014 , 20, 614-22	11.5	68
123	Patient with three euchromatic supernumerary marker chromosomes derived from chromosomes 1, 12, and 18: characterization and evaluation of the aberrations. <i>American Journal of Medical Genetics, Part A</i> , 2014 , 164A, 736-40	2.5	2
122	Clinical utility gene card for: Beckwith-Wiedemann Syndrome. <i>European Journal of Human Genetics</i> , 2014 , 22,	5.3	43
121	Einsatz der molekularen Karyotypisierung in der Pfliatrie. <i>Monatsschrift Fur Kinderheilkunde</i> , 2013 , 161, 633-643	0.2	1
120	Molekulargenetische Diagnostik von Imprintingerkrankungen. Medizinische Genetik, 2013 , 25, 5-14	0.5	2
119	Frequency and characterization of DNA methylation defects in children born SGA. <i>European Journal of Human Genetics</i> , 2013 , 21, 838-43	5.3	12
118	Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders. <i>Journal of Pediatrics</i> , 2013 , 163, 1202-7	3.6	5
117	Molekulargenetische Diagnostik von Imprinting-Erkrankungen. <i>BioSpektrum</i> , 2013 , 19, 753-758	0.1	
116	UPDtool: a tool for detection of iso- and heterodisomy in parent-child trios using SNP microarrays. <i>Bioinformatics</i> , 2013 , 29, 1562-4	7.2	21
115	Genome-wide paternal uniparental disomy mosaicism in a woman with Beckwith-Wiedemann syndrome and ovarian steroid cell tumour. <i>European Journal of Human Genetics</i> , 2013 , 21, 788-91	5.3	32

(2011-2013)

114	Adult height and epigenotype in children with Silver-Russell syndrome treated with GH. <i>Hormone Research in Paediatrics</i> , 2013 , 80, 193-200	3.3	25	
113	IGF1R mutation analysis in short children with Silver-Russell syndrome features. <i>Journal of Pediatric Genetics</i> , 2013 , 2, 113-7	0.7	5	
112	Multi-exon deletion in the XDH gene as a cause of classical xanthinuria. <i>Clinical Nephrology</i> , 2013 , 79, 78-80	2.1	3	
111	Segmental maternal uniparental disomy 7q associated with DLK1/GTL2 (14q32) hypomethylation. <i>American Journal of Medical Genetics, Part A</i> , 2012 , 158A, 423-8	2.5	20	
110	Molecular karyotyping as a relevant diagnostic tool in children with growth retardation with Silver-Russell features. <i>Journal of Pediatrics</i> , 2012 , 161, 933-42	3.6	32	
109	2p21 Deletions in hypotonia-cystinuria syndrome. European Journal of Medical Genetics, 2012 , 55, 561-3	2.6	13	
108	Imprinting Disorders 2012 , 379-395		2	
107	Epigenetic and genetic diagnosis of Silver-Russell syndrome. <i>Expert Review of Molecular Diagnostics</i> , 2012 , 12, 459-71	3.8	21	
106	Heterogeneous growth patterns in carriers of chromosome 7p12.2 imbalances affecting GRB10. American Journal of Medical Genetics, Part A, 2012 , 158A, 2815-9	2.5	6	
105	Cystinuria: an inborn cause of urolithiasis. Orphanet Journal of Rare Diseases, 2012 , 7, 19	4.2	63	
104	Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. <i>Clinical Genetics</i> , 2012 , 81, 298-300	4	23	
103	Clinical utility gene card for: Cystinuria. European Journal of Human Genetics, 2012, 20,	5.3	10	
102	Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. <i>Journal of Medical Genetics</i> , 2012 , 49, 547-53	5.8	58	
101	Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci. <i>Epigenetics</i> , 2012 , 7, 473-81	5.7	28	
100	Duplication 3q13.11q23: Longitudinal study in a patient over a period of more than 7 years and refinements of the breakpoints. <i>Journal of Pediatric Genetics</i> , 2012 , 1, 143-7	0.7		
99	Mosaic tetrasomy 14pterq13.1: longitudinal study. <i>European Journal of Medical Genetics</i> , 2011 , 54, e465	5- 7 .6	2	
98	Silver-Russell syndrome. <i>Best Practice and Research in Clinical Endocrinology and Metabolism</i> , 2011 , 25, 153-60	6.5	26	
97	Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. <i>Epigenomics</i> , 2011 , 3, 625-37	4.4	25	

96	Molecular Genetic Testing in Cystinuria. International Journal of Human Genetics, 2011, 11, 41-44	1	3
95	Imprinting Disorders in Humans 2011 , 581-593		
94	Supernumerary Asymmetric Dic(15;15) With Secondary Mosaic Formation in One of Two Developmentally Retarded Twins. <i>International Journal of Human Genetics</i> , 2011 , 11, 75-82	1	
93	Silver-Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. <i>Clinical Genetics</i> , 2011 , 80, 83-8	4	51
92	Clinical utility gene card for: Silver-Russell syndrome. European Journal of Human Genetics, 2011, 19,	5.3	11
91	Silver-Russell-Kleinwuchs. <i>Monatsschrift Fur Kinderheilkunde</i> , 2011 , 159, 576-582	0.2	2
90	Testing of buccal swab DNA does not increase the detection rate for imprinting control region 1 hypomethylation in Silver-Russell syndrome. <i>Genetic Testing and Molecular Biomarkers</i> , 2011 , 15, 725-6	1.6	2
89	Submicroscopic chromosomal imbalances in idiopathic Silver-Russell syndrome (SRS): the SRS phenotype overlaps with the 12q14 microdeletion syndrome. <i>Journal of Medical Genetics</i> , 2010 , 47, 356	-ē0 ⁸	38
88	Silver-Russell syndrome: genetic basis and molecular genetic testing. <i>Orphanet Journal of Rare Diseases</i> , 2010 , 5, 19	4.2	62
87	MBD3 mutations are not responsible for ICR1 hypomethylation in Silver-Russell syndrome. <i>European Journal of Medical Genetics</i> , 2010 , 53, 23-4	2.6	3
86	Uniparentale Disomien. <i>Medizinische Genetik</i> , 2010 , 22, 439-451	0.5	3
85	Genetik und Epigenetik des Silver-Russell-Syndroms. <i>Medizinische Genetik</i> , 2010 , 22, 405-410	0.5	1
84	Identification of a 21q22 duplication in a Silver-Russell syndrome patient further narrows down the Down syndrome critical region. <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 356-9	2.5	12
83	Chromosome 11p15 duplication in Silver-Russell syndrome due to a maternally inherited translocation t(11;15). <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 1484-7	2.5	11
82	Russell-Silver syndrome. <i>American Journal of Medical Genetics, Part C: Seminars in Medical Genetics</i> , 2010 , 154C, 355-64	3.1	77
81	Genetic and epigenetic findings in Silver-Russell syndrome. <i>Pediatric Endocrinology Reviews</i> , 2010 , 8, 86-93	1.1	20
80	Molecular Analyses of the BORIS Gene in Children with Silver-Russell Syndrome. <i>International Journal of Human Genetics</i> , 2009 , 9, 269-272	1	
79	LOT1 (ZAC1/PLAGL1) as member of an imprinted gene network does not harbor Silver-Russell specific variants. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2009 , 22, 555-9	1.6	4

(2008-2009)

78	Silver-Russell and Beckwith-Wiedemann syndromes: opposite (epi)mutations in 11p15 result in opposite clinical pictures. <i>Hormone Research in Paediatrics</i> , 2009 , 71 Suppl 2, 30-5	3.3	40
77	Epigenetic regulation of growth: lessons from Silver-Russell syndrome. <i>Endocrine Development</i> , 2009 , 14, 10-9		9
76	Broad clinical spectrum in Silver-Russell syndrome and consequences for genetic testing in growth retardation. <i>Pediatrics</i> , 2009 , 123, e929-31	7.4	51
75	Novel human pathological mutations. Gene symbol: SLC3A1. Disease: Cystinuria. <i>Human Genetics</i> , 2009 , 126, 330	6.3	
74	Screening for genomic variants in ZFP57 in Silver-Russell syndrome patients with 11p15 epimutations. <i>European Journal of Medical Genetics</i> , 2009 , 52, 415-6	2.6	21
73	Non-Mosaic Trisomy 7 in Chorionic Villi and Trisomy 18 in the Fetus: An Extreme form of Mosaic Variegated Aneuploidy?. <i>International Journal of Human Genetics</i> , 2009 , 9, 1-4	1	
72	Novel human pathological mutations. Gene symbol: SLC3A1. Disease: Cystinuria. <i>Human Genetics</i> , 2009 , 126, 329	6.3	1
71	Novel human pathological mutations. Gene symbol: SLC7A9. Disease: Cystinuria. <i>Human Genetics</i> , 2009 , 126, 330	6.3	1
70	IGF2/H19 hypomethylation in Silver-Russell syndrome and isolated hemihypoplasia. <i>European Journal of Human Genetics</i> , 2008 , 16, 328-34	5.3	33
69	Segmental maternal UPD(7q) in Silver-Russell syndrome. Clinical Genetics, 2008, 74, 486-9	4	27
68	Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. <i>Trends in Genetics</i> , 2008 , 24, 195-204	8.5	92
67	A new splice site mutation in the SMN1 gene causes discrepant results in SMN1 deletion screening approaches. <i>Neuromuscular Disorders</i> , 2008 , 18, 146-9	2.9	18
66	No evidence for isolated imprinting mutations in the PEG1/MEST locus in Silver-Russell patients. <i>European Journal of Medical Genetics</i> , 2008 , 51, 322-4	2.6	13
65	ICR1 epimutations in llp15 are restricted to patients with Silver-Russell syndrome features. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2008 , 21, 59-62	1.6	4
64	Are H19 variants associated with Silver-Russell syndrome?. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2008 , 21, 985-93	1.6	3
63	The endocrine phenotype in silver-russell syndrome is defined by the underlying epigenetic alteration. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 1402-7	5.6	72
	The endocrine phenotype in silver-russell syndrome is defined by the underlying epigenetic	5.6 1	72 1

60	Isolated cystinuria (OMIM 238200) is not a separate entity but is caused by a mutation in the cystinuria gene SLC7A9. <i>Clinical Genetics</i> , 2007 , 71, 597-8	4	13
59	The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. <i>Journal of Medical Genetics</i> , 2007 , 44, 59-63	5.8	88
58	No evidence for additional imprinting defects in Silver-Russell syndrome patients with maternal uniparental disomy 7 or 11p15 epimutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2007 , 20, 1329-31	1.6	6
57	Hypomethylation in the 11p15 telomeric imprinting domain in a patient with Silver-Russell syndrome with a CSH1 deletion (17q24) renders a functional role of this alteration unlikely. <i>Journal of Medical Genetics</i> , 2007 , 44, e77	5.8	4
56	Mutation analysis of GNAS1 and overlapping transcripts in Silver-Russell syndrome patients. <i>Molecular Genetics and Metabolism</i> , 2007 , 90, 224-6	3.7	2
55	IGF-II serum levels are normal in children with Silver-Russell syndrome who frequently carry epimutations at the IGF2 locus. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2006 , 91, 4709-12	5.6	44
54	Identification of novel cystinuria mutations in pediatric patients. <i>Journal of Pediatric Urology</i> , 2006 , 2, 575-8	1.5	9
53	(Epi)mutations in 11p15 significantly contribute to Silver-Russell syndrome: but are they generally involved in growth retardation?. <i>European Journal of Medical Genetics</i> , 2006 , 49, 414-8	2.6	41
52	Supernumerary marker chromosome 7 and maternal uniparental disomy 7 in a boy with growth retardation and triangular face. <i>Clinical Dysmorphology</i> , 2006 , 15, 9-12	0.9	7
51	Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. <i>Journal of Medical Genetics</i> , 2006 , 43, 615-6	5.8	63
50	Gene symbol: SLC3A1. Disease: Cystinuria. Accession #Hm0543. Human Genetics, 2006, 118, 779	6.3	
49	Functional analysis of a new splice site mutation, c.605-3C>A, in the cystinuria gene SLC7A9 leading to exon skipping. <i>Molecular Genetics and Metabolism</i> , 2005 , 84, 172-5	3.7	1
48	Analysis of genomic variants in the KCNQ1OT1 transcript in Silver-Russell syndrome patients. <i>Molecular Genetics and Metabolism</i> , 2005 , 84, 376-7	3.7	4
47	Diagnostic proceeding in Silver-Russell syndrome. <i>Molecular Diagnosis and Therapy</i> , 2005 , 9, 205-9		12
46	Somatic mosaicism for a heterozygous deletion of the survival motor neuron (SMN1) gene. <i>European Journal of Human Genetics</i> , 2005 , 13, 309-13	5.3	11
45	A rapid microarray based whole genome analysis for detection of uniparental disomy. <i>Human Mutation</i> , 2005 , 26, 153-9	4.7	50
44	Mosaic tetrasomy 14pter-q13 due to a supernumerary isodicentric derivate of proximal chromosome 14q 2005 , 134, 305-8		9
43	Genetik des Silver-Russell-Syndroms. <i>Monatsschrift Fur Kinderheilkunde</i> , 2005 , 153, 264-272	0.2	2

(2002-2005)

42	Search for mutations in SLC1A5 (19q13) in cystinuria patients. <i>Journal of Inherited Metabolic Disease</i> , 2005 , 28, 1169-71	5.4	6
41	Is maternal duplication of 11p15 associated with Silver-Russell syndrome?. <i>Journal of Medical Genetics</i> , 2005 , 42, e26	5.8	68
40	Silver-Russell syndrome-like features in a patient carrying a novel NF1 mutation. <i>Pediatric Research</i> , 2005 , 58, 1265-8	3.2	1
39	Diagnostic Proceeding in Silver-Russell Syndrome 2005 , 9, 205		2
38	Ring Chromosome 18: Clinical, Cytogenetic and Molecular Genetic Studies on Four Patients. <i>International Journal of Human Genetics</i> , 2004 , 4, 197-200	1	1
37	Quantification of GRB10 in 7p12-p14 by fluorogenic 5Pnuclease chemistry and application for genetic diagnosis in Silver-Russell syndrome. <i>Annales De GMique</i> , 2004 , 47, 99-102		4
36	The population-specific distribution and frequencies of genomic variants in the SLC3A1 and SLC7A9 genes and their application in molecular genetic testing of cystinuria. <i>Urological Research</i> , 2004 , 32, 75	-8	25
35	Searching for genomic variants in IGF2 and CDKN1C in Silver-Russell syndrome patients. <i>Molecular Genetics and Metabolism</i> , 2004 , 82, 246-50	3.7	22
34	No evidence for a role of SLC7A10 in 19q13 in the etiology of cystinuria. <i>Clinical Nephrology</i> , 2004 , 62, 71-3	2.1	5
33	Maternal uniparental disomy 16 and genetic counseling: new case and survey of published cases. <i>Genetic Counseling</i> , 2004 , 15, 183-90		19
32	Robertson-Translokationen und uniparentale Disomien: Indikationen zur pr\(\textstar\) atalen Diagnostik?. Reproduktionsmedizin, 2003 , 19, 93-97		
31	Determination of SMN1 and SMN2 copy number using TaqMan technology. <i>Human Mutation</i> , 2003 , 22, 74-8	4.7	92
30	Significant contribution of genomic rearrangements in SLC3A1 and SLC7A9 to the etiology of cystinuria. <i>Kidney International</i> , 2003 , 64, 1564-72	9.9	28
29	Characterization of genomic variants in CSH1 and GH2, two candidate genes for Silver-Russell syndrome in 17q24-q25. <i>Genetic Testing and Molecular Biomarkers</i> , 2003 , 7, 259-63		13
28	Uniparental disomy and Robertsonian translocations: risk estimation and prenatal testing. <i>Molecular Diagnosis and Therapy</i> , 2003 , 7, 113-7		1
27	Searching for genomic variants in the MESTIT1 transcript in Silver-Russell syndrome patients. Journal of Medical Genetics, 2003 , 40, e65	5.8	7
26	Genomic characterisation of C7orf10 in Silver-Russell syndrome patients. <i>Journal of Medical Genetics</i> , 2003 , 40, e44	5.8	4
25	Screening for mutations in the gene for phosphorylation kinase gamma1 in Silver-Russell syndrome patients. <i>Annales De Galique</i> , 2002 , 45, 219-21		

24	Maternale uniparentale Disomie 14 Ein weiteres Imprintingsyndrom. <i>Monatsschrift Fur Kinderheilkunde</i> , 2002 , 150, 856-865	0.2	2
23	Uniparental disomy: clinical indications for testing in growth retardation. <i>European Journal of Pediatrics</i> , 2002 , 161, 305-12	4.1	25
22	Supernumerary marker chromosomes derived from chromosome 15: analysis of 32 new cases. <i>Clinical Genetics</i> , 2002 , 62, 89-93	4	42
21	Cystinuria in children: distribution and frequencies of mutations in the SLC3A1 and SLC7A9 genes. <i>Kidney International</i> , 2002 , 62, 1136-42	9.9	50
20	Screening for insulin-like growth factor-I receptor mutations in patients with Silver-Russell syndrome. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2002 , 15, 1167-71	1.6	12
19	Longitudinal Study in a Patient with Trisomy 8 Mosaicism: Cytogenetic and Molecular-Genetic Investigations over a Period of Eleven Years. <i>International Journal of Human Genetics</i> , 2002 , 2, 101-106	1	
18	Analysis of the genes SLC7A9 and SLC3A1 in unclassified cystinurics: mutation detection rates and association between variants in SLC7A9 and the disease. <i>Clinical Nephrology</i> , 2002 , 57, 342-8	2.1	21
17	IRS1 and GRB2 as members of the IGF signal transduction pathway are not associated with intrauterine growth retardation and Silver-Russell syndrome. <i>Clinical Genetics</i> , 2001 , 59, 371-3	4	6
16	Evidence from skewed X inactivation for trisomy mosaicism in Silver-Russell syndrome. <i>European Journal of Human Genetics</i> , 2001 , 9, 887-91	5.3	7
15	Gene dosage analysis in Silver-Russell syndrome: use of quantitative competitive PCR and dual-color FISH to estimate the frequency of duplications in 7p11.2-p13. <i>Genetic Testing and Molecular Biomarkers</i> , 2001 , 5, 261-6		11
14	Conflicting reports of imprinting status of human GRB10 in developing brain: how reliable are somatic cell hybrids for predicting allelic origin of expression?. <i>American Journal of Human Genetics</i> , 2001 , 68, 543-5	11	26
13	Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD(20) in a cohort of growth retarded patients. <i>Journal of Medical Genetics</i> , 2001 , 38, 86-9	5.8	60
12	Mosaic rearrangement of chromosome 18: Characterization by FISH mapping and DNA studies shows trisomy 18p and monosomy 18p both of paternal origin. <i>American Journal of Medical Genetics Part A</i> , 2000 , 92, 101-106		13
11	Novel silent variant (c1722G>A) in the coding region of the insulin receptor substrate 1 (IRS1) gene. <i>Human Mutation</i> , 2000 , 16, 533	4.7	1
10	Familial robertsonian translocation 15;21 and rare paracentric inv(21): unexpected re-inversion in a child with translocation trisomy 21. <i>European Journal of Human Genetics</i> , 2000 , 8, 815-9	5.3	2
9	Formation of uniparental disomy 7 delineated from new cases and a UPD7 case after trisomy 7 rescue. Presentation of own results and review of the literature. <i>Annales De Galique</i> , 2000 , 43, 15-21		28
8	Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue-and isoform-specific fashion. <i>Human Molecular Genetics</i> , 2000 , 9, 1587-95	5.6	117
7	Search for uniparental disomy 14 in balanced Robertsonian translocation carriers. <i>Clinical Genetics</i> , 1999 , 56, 464-6	4	8

LIST OF PUBLICATIONS

6	Mutations in the SLC3A1 gene in cystinuric patients: frequencies and identification of a novel mutation. <i>Genetic Testing and Molecular Biomarkers</i> , 1999 , 3, 227-31		18
5	Screening for mutations in the promoter and the coding region of the IGFBP1 and IGFBP3 genes in Silver-Russell syndrome patients. <i>Human Heredity</i> , 1999 , 49, 123-8	1.1	21
4	Paternally inherited deletion of CSH1 in a patient with Silver-Russell syndrome. <i>Journal of Medical Genetics</i> , 1998 , 35, 784-6	5.8	25
3	A case of de novo translocation 16;21: trisomy 16q phenotype and origin of the aberration. <i>Annales De Gallique</i> , 1998 , 41, 205-8		8
2	Molecular studies in 37 Silver-Russell syndrome patients: frequency and etiology of uniparental disomy. <i>Human Genetics</i> , 1997 , 100, 415-9	6.3	135
1	Report of two new cases of Pallister-Killian syndrome confirmed by FISH: tissue-specific mosaicism and loss of i(12p) by in vitro selection. <i>American Journal of Medical Genetics Part A</i> , 1997 , 72, 106-10		39