
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6423607/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF                 | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 1  | Investigation of etching selectivity and microstructure of Ag-doped Sb <sub>2</sub> Te thin film for dry lithography. Semiconductor Science and Technology, 2022, 37, 035004.                                                                         | 2.0                | 6         |
| 2  | High quantum efficiency of 1.8Âμm luminescence in Tm3+ fluoride tellurite glass. Infrared Physics and<br>Technology, 2022, 123, 104055.                                                                                                               | 2.9                | 10        |
| 3  | Dimensional Stability Ground Test and in-Orbit Prediction of SiC Telescope Frame for Space<br>Gravitational Wave Detection. IEEE Access, 2022, 10, 21041-21047.                                                                                       | 4.2                | 2         |
| 4  | High optical/color contrast of Sb2Te thin film and its structural origin. Materials Science in<br>Semiconductor Processing, 2022, 144, 106619.                                                                                                        | 4.0                | 8         |
| 5  | A phosphorus-doped g-C3N4 nanosheets as an efficient and sensitive fluorescent probe for Fe3+<br>detection. Optical Materials, 2021, 119, 111393.                                                                                                     | 3.6                | 9         |
| 6  | Supramolecular Copolymerization Strategy for Realizing the Broadband White Light Luminescence<br>Based on N-Deficient Porous Graphitic Carbon Nitride (g-C <sub>3</sub> N <sub>4</sub> ). ACS Applied<br>Materials & Interfaces, 2020, 12, 6396-6406. | 8.0                | 54        |
| 7  | A new whole family perovskites quantum dots (CsPbX3, X=Cl, Br, I) phosphate glasses with full spectral emissions. Journal of Alloys and Compounds, 2020, 817, 153338.                                                                                 | 5.5                | 33        |
| 8  | Effect of introduction of TiO2 and GeO2 oxides on thermal stability and 2â€ <sup>−</sup> μm luminescence properties of tellurite glasses. Ceramics International, 2019, 45, 16411-16416.                                                              | 4.8                | 24        |
| 9  | Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics. Journal of Luminescence, 2019, 211, 418-425.                                                                 | 3.1                | 3         |
| 10 | Fe3+-selective and sensitive "on-off―fluorescence probe based on the graphitic carbon nitride<br>nanosheets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 341-347.                                               | 3.9                | 17        |
| 11 | Efficient manipulation of 2.0â€ <sup>−</sup> µm mid-infrared luminescence in silicate glass by structural engineering.<br>Ceramics International, 2019, 45, 3435-3440.                                                                                | 4.8                | 3         |
| 12 | Broadband 2â€Î¼m emission characteristics and energy transfer mechanism of Ho3+ doped<br>silicate-germanate glass sensitized by Tm3+ ions. Optics and Laser Technology, 2019, 111, 115-120.                                                           | 4.6                | 30        |
| 13 | 2.75â€Î¼m spectroscopic properties and energy transfer mechanism in Er/Ho codoped fluorotellurite<br>glasses. Journal of Alloys and Compounds, 2018, 744, 502-506.                                                                                    | 5.5                | 12        |
| 14 | Analysis of mid-infrared photoluminescence around 2.85â€ <sup>−</sup> μm in Yb3+/Ho3+ co-doped synthetic<br>silica-germanate glass. Infrared Physics and Technology, 2018, 89, 363-368.                                                               | 2.9                | 12        |
| 15 | Efficient 2â€ <sup>−</sup> μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized<br>by Er3+ ions. Infrared Physics and Technology, 2018, 91, 200-205.                                                              | 2.9                | 7         |
| 16 | Investigation of Tm3+/Yb3+ co-doped germanate–tellurite glasses for efficient 2µm mid-infrared laser<br>materials. Applied Physics B: Lasers and Optics, 2018, 124, 1.                                                                                | 2.2                | 14        |
| 17 | Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ~2 μm mid-infrared laser material.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 65-70.                                                        | 3.9                | 24        |
| 18 | Broadening and enhancing 27  μm emission spectra in Er/Ho co-doped oxyfluoride germanosilicate gla<br>ceramics by imparting multiple local structures to rare earth ions. Photonics Research, 2018, 6, 339.                                           | <sup>3SS</sup> 7.0 | 35        |

**WEI TAO** 

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution.<br>Scientific Reports, 2017, 7, 42712.                                                                               | 3.3 | 25        |
| 20 | Spectroscopic properties and energy transfer process in Tm 3+ -doped Silica-germanate glasses.<br>Journal of Luminescence, 2017, 187, 205-210.                                                                     | 3.1 | 19        |
| 21 | High-speed maskless nanolithography with visible light based on photothermal localization. Scientific<br>Reports, 2017, 7, 43892.                                                                                  | 3.3 | 25        |
| 22 | An efficient 2.0 μm emission of Er 3+ /Ho 3+ co-doped lead silicate glass. Infrared Physics and<br>Technology, 2017, 83, 1-6.                                                                                      | 2.9 | 11        |
| 23 | 2 μ4m emission performance in Tm3+/Er3+ codoped silicate glasses under 800 nm and 980 nm excitation.<br>Infrared Physics and Technology, 2017, 81, 21-26.                                                          | 2.9 | 2         |
| 24 | Broadband 2 µm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass.<br>Journal of Luminescence, 2017, 190, 76-80.                                                                         | 3.1 | 18        |
| 25 | Efficient 2 µm emission in Nd 3+ /Ho 3+ co-doped silicate-germanate glass pumped by common 808 nm LD.<br>Optics and Laser Technology, 2017, 89, 108-113.                                                           | 4.6 | 21        |
| 26 | Manipulation and simulations of thermal field profiles in laser heat-mode lithography. Journal of<br>Applied Physics, 2017, 122, .                                                                                 | 2.5 | 7         |
| 27 | Spectroscopy of thulium and holmium co-doped silicate glasses. Optical Materials Express, 2016, 6, 2252.                                                                                                           | 3.0 | 37        |
| 28 | Spectroscopic properties and energy transfer mechanism in Dy3+/Tm3+ codoped fluoroaluminate glasses modified by TeO2. Ceramics International, 2016, 42, 132-137.                                                   | 4.8 | 16        |
| 29 | Origin of arbitrary patterns by direct laser writing in a telluride thin film. RSC Advances, 2016, 6,<br>45748-45752.                                                                                              | 3.6 | 8         |
| 30 | Ho 3+ doped germanate-tellurite glass sensitized by Er 3+ and Yb 3+ for efficient 2.0 μm laser material.<br>Materials Research Bulletin, 2016, 84, 124-131.                                                        | 5.2 | 30        |
| 31 | Thermal and luminescent properties of 2  μm emission in thulium-sensitized holmium-doped<br>silicate-germanate glass. Photonics Research, 2016, 4, 214.                                                            | 7.0 | 38        |
| 32 | Enhanced effect of Er 3+ ions on 2.0 and 2.85Âî¼m emission of Ho 3+ /Yb 3+ doped germanate-tellurite<br>glass. Optical Materials, 2016, 60, 252-257.                                                               | 3.6 | 26        |
| 33 | Enhanced 2.7- and 2.9-μm emissions in Er 3+ /Ho 3+ doped fluoride glasses sensitized by Pr 3+ ions.<br>Materials Research Bulletin, 2016, 76, 67-71.                                                               | 5.2 | 39        |
| 34 | 2.7 μm emissions in Er 3+ : NaYF 4 embedded aluminosilicate glass ceramics. Ceramics International, 2016,<br>42, 1332-1338.                                                                                        | 4.8 | 20        |
| 35 | R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials.<br>Scientific Reports, 2015, 5, 13056.                                                                       | 3.3 | 15        |
| 36 | The influence of TeO2 on thermal stability and 1.53μm spectroscopic properties in Er3+ doped<br>oxyfluorite glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150,<br>162-169. | 3.9 | 11        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Broadband 2î¼m fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161, 95-104.                                | 2.3 | 23        |
| 38 | Effect of TeO2 addition on thermal stabilities and 2.7 μm emission properties of<br>fluoroaluminate–tellurite glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015,<br>165, 93-101.               | 2.3 | 8         |
| 39 | Observation of Midinfrared 4-\$mu ext{m}\$ Emission in Ho <sup>3+</sup> -Doped Fluoroaluminate<br>Glasses. IEEE Photonics Technology Letters, 2015, 27, 959-962.                                                      | 2.5 | 2         |
| 40 | Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses. Journal of Luminescence, 2015, 162, 58-62.                                                                     | 3.1 | 36        |
| 41 | 2μm fluorescence of Ho3+:5I7→5I8 transition sensitized by Er3+ in tellurite germanate glasses. Optical<br>Materials, 2015, 49, 116-122.                                                                               | 3.6 | 40        |
| 42 | Highly efficient mid-infrared 2 μm emission in Ho^3+/Yb^3+-codoped germanate glass. Optical Materials<br>Express, 2015, 5, 1431.                                                                                      | 3.0 | 41        |
| 43 | Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials. Journal of Alloys and Compounds, 2015, 626, 165-172.                                   | 5.5 | 52        |
| 44 | Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD. Optical Materials, 2014, 36, 1350-1356.                                                                    | 3.6 | 9         |
| 45 | Structure and spectroscopic properties of Er3+ doped germanate glass for mid-infrared application.<br>Solid State Sciences, 2014, 31, 54-61.                                                                          | 3.2 | 14        |
| 46 | Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2μm laser applications. Optics<br>Communications, 2014, 321, 183-188.                                                                             | 2.1 | 34        |
| 47 | Analysis of structure origin and luminescence properties of Yb3+–Er3+ co-doped fluorophosphate<br>glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 235-240.                   | 3.9 | 1         |
| 48 | 2.7μm fluorescence and energy transfer in Er3+ doped germanosilicate glasses. Materials Research<br>Bulletin, 2014, 54, 20-23.                                                                                        | 5.2 | 7         |
| 49 | Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica–germanate glass for fiber<br>amplifier. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 126, 53-58.               | 3.9 | 18        |
| 50 | Analysis on energy transfer process of Ho 3+ doped fluoroaluminate glass sensitized by Yb 3+ for<br>mid-infrared 2.85 1¼m emission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149,<br>41-50. | 2.3 | 45        |
| 51 | Broadband 1.53μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier.<br>Optics Communications, 2014, 315, 199-203.                                                                  | 2.1 | 46        |
| 52 | 1.53μm emission properties in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses for an optical amplifier. Journal of Luminescence, 2014, 154, 41-45.                                                               | 3.1 | 20        |
| 53 | Spectroscopic analysis and efficient diode-pumped 2.0î¼m emission in Ho3+/Tm3+ codoped fluoride glass.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 33-38.                    | 3.9 | 23        |
| 54 | Erbium doped heavy metal oxide glasses for mid-infrared laser materials. Journal of Non-Crystalline<br>Solids, 2013, 377, 119-123.                                                                                    | 3.1 | 39        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Intense mid-infrared emissions and energy transfer dynamics in Ho3+/Er3+ codoped fluoride glass.<br>Journal of Luminescence, 2013, 138, 94-97.                                                                                | 3.1 | 41        |
| 56 | Pr^3+-sensitized Er^3+-doped bismuthate glass for generating high inversion rates at 27µm<br>wavelength. Optics Letters, 2012, 37, 3387.                                                                                      | 3.3 | 31        |
| 57 | Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4l11/2→4l13/2 transition in Er3+/Yb3+<br>doped germanate glasses. Journal of Applied Physics, 2012, 111, 033524.                                           | 2.5 | 26        |
| 58 | Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass. Materials Letters, 2012, 69, 72-75.                                                                                       | 2.6 | 29        |
| 59 | 2.7μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride<br>glass under 800nm and 980nm excitation. Journal of Quantitative Spectroscopy and Radiative<br>Transfer, 2012, 113, 87-95. | 2.3 | 125       |
| 60 | Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped<br>ZrF4–BaF2–LaF3–AlF3–YF3 glass. Journal of Luminescence, 2012, 132, 128-131.                                                                 | 3.1 | 36        |
| 61 | Mid-infrared luminescence and energy transfer of Dy3+/Tm3+ doped fluorophosphate glass. Journal of<br>Luminescence, 2012, 132, 1873-1878.                                                                                     | 3.1 | 11        |
| 62 | Structural Origin and Energy Transfer Processes of 1.8 μm Emission in Tm <sup>3+</sup> Doped Germanate Glasses. Journal of Physical Chemistry A, 2011, 115, 6488-6492.                                                        | 2.5 | 19        |
| 63 | Observation of 27μm emission from diode-pumped Er^3+/Pr^3+-codoped fluorophosphate glass. Optics<br>Letters, 2011, 36, 109.                                                                                                   | 3.3 | 91        |
| 64 | Enhanced emission of 27 μm pumped by laser diode from Er^3+/Pr^3+-codoped germanate glasses. Optics<br>Letters, 2011, 36, 1173.                                                                                               | 3.3 | 109       |
| 65 | Intense 27 μm and broadband 20 μm emission from diode-pumped Er^3+/Tm^3+/Ho^3+-doped<br>fluorophosphate glass. Optics Letters, 2011, 36, 3218.                                                                                | 3.3 | 21        |
| 66 | 2 μm spectroscopic investigation of Tm3+-doped tellurite glass fiber. Journal of Non-Crystalline Solids, 2011, 357, 2489-2493.                                                                                                | 3.1 | 29        |
| 67 | Enhanced 2.7 μ4m Emission from Er3+/Tm3+/Pr3+ Triply Doped Fluoride Glass. Journal of the American Ceramic Society, 2011, 94, 2289-2291.                                                                                      | 3.8 | 23        |
| 68 | Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7μm laser materials. Optical Materials, 2011, 34, 308-312.                                                                 | 3.6 | 76        |
| 69 | Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses. Optical Materials, 2011, 33, 299-302.                                                                           | 3.6 | 41        |
| 70 | Intense 2.0 <i>μ</i> m emission properties and energy transfer of Ho3+/Tm3+/Yb3+ doped<br>fluorophosphate glasses. Journal of Applied Physics, 2011, 110, .                                                                   | 2.5 | 26        |
| 71 | Comparative investigation on the 2.7 μm emission in Er3+/Ho3+ codoped fluorophosphate glass. Journal of Applied Physics, 2011, 110, 093106.                                                                                   | 2.5 | 22        |
| 72 | Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite<br>glasses. Journal of Applied Physics, 2011, 110, .                                                                            | 2.5 | 38        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Enhanced effect of Ce3+ ions on 2 <i>μ</i> m emission and energy transfer properties in Yb3+/Ho3+<br>doped fluorophosphate glasses. Journal of Applied Physics, 2011, 109, . | 2.5 | 24        |
| 74 | 2.05 µm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+,<br>and Er3+. Journal of Applied Physics, 2011, 109, .                    | 2.5 | 38        |
| 75 | 2.0μ4m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+–Ho3+ ions.<br>Optical Materials, 2010, 32, 1451-1455.                                   | 3.6 | 39        |
| 76 | 2μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+. Optical Materials, 2010, 32,<br>1508-1513.                                                              | 3.6 | 64        |
| 77 | 1.8â€,μm emission of highly thulium doped fluorophosphate glasses. Journal of Applied Physics, 2010, 108,<br>083504.                                                         | 2.5 | 55        |