Barnaby W Greenland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6422927/publications.pdf

Version: 2024-02-01

57 papers

3,690 citations

236925 25 h-index 57 g-index

64 all docs

64
docs citations

64 times ranked 4266 citing authors

#	Article	IF	Citations
1	Expanding the Repertoire of Lowâ€Molecularâ€Weight Pentafluorosulfanylâ€Substituted Scaffolds. ChemMedChem, 2022, 17, e202100641.	3.2	6
2	A fluoride degradable crosslinker for debond-on-demand polyurethane based crosslinked adhesives. Materials Today Communications, 2021, 26, 101777.	1.9	2
3	Synthesis and biological evaluation of benzodiazepines containing a pentafluorosulfanyl group. Tetrahedron, 2021, 85, 132020.	1.9	8
4	Fluoride-responsive debond on demand adhesives: Manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures. European Polymer Journal, 2019, 119, 260-271.	5.4	24
5	Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. European Polymer Journal, 2019, 121, 109264.	5.4	39
6	Self-assembling unsymmetrical bis-ureas. Reactive and Functional Polymers, 2018, 124, 156-161.	4.1	7
7	Mutual Complexation between π–π Stacked Molecular Tweezers. Crystal Growth and Design, 2018, 18, 386-392.	3.0	15
8	Conjugated, rod-like viologen oligomers: Correlation of oligomer length with conductivity and photoconductivity. Synthetic Metals, 2018, 241, 31-38.	3.9	9
9	Elements of fractal geometry in the ¹ H NMR spectrum of a copolymer intercalation-complex: identification of the underlying Cantor set. Chemical Science, 2018, 9, 4052-4061.	7.4	5
10	Quadruple stacking of macrocyclic viologen radical-cations. Supramolecular Chemistry, 2018, 30, 751-757.	1.2	6
11	A macrocyclic receptor containing two viologen species connected by conjugated terphenyl groups. Organic and Biomolecular Chemistry, 2018, 16, 5006-5015.	2.8	6
12	Prediction of cathodic E $1/2$ 1 and E $1/2$ 2 values for viologen-containing conjugated unimers and dimers from calculated p K b values of the aromatic substituents. Tetrahedron Letters, 2017, 58, 1859-1862.	1.4	8
13	Fluoride degradable and thermally debondable polyurethane based adhesive. Polymer Chemistry, 2017, 8, 7207-7216.	3.9	36
14	Chapter 6. Polymeric Materials Based on NDI and its Congeners. Monographs in Supramolecular Chemistry, 2017, , 167-217.	0.2	0
15	Installing Multiple Functional Groups on Biodegradable Polyesters via Post-Polymerization Olefin Cross-Metathesis. Macromolecules, 2016, 49, 6826-6834.	4.8	28
16	Multifunctional, Biocompatible, Nonâ€peptidic Hydrogels: from Water Purification to Drug Delivery. ChemistrySelect, 2016, 1, 1641-1649.	1.5	5
17	A systematic study of the effect of the hard end-group composition on the microphase separation, thermal and mechanical properties of supramolecular polyurethanes. Polymer, 2016, 107, 368-378.	3.8	19
18	Efficient access to conjugated 4,4′-bipyridinium oligomers using the Zincke reaction: synthesis, spectroscopic and electrochemical properties. Organic and Biomolecular Chemistry, 2016, 14, 980-988.	2.8	19

#	Article	IF	Citations
19	Tuning thermal properties and microphase separation in aliphatic polyester ABA copolymers. Polymer Chemistry, 2015, 6, 1445-1453.	3.9	32
20	Supramolecular Approach to New Inkjet Printing Inks. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8906-8914.	8.0	40
21	Supramolecular Polymer Networks and Gels. Advances in Polymer Science, 2015, , .	0.8	39
22	Molecular design of a discrete chain-folding polyimide for controlled inkjet deposition of supramolecular polymers. Polymer Chemistry, 2015, 6, 7342-7352.	3.9	11
23	Donor–Acceptor ï€â€"ï€ Stacking Interactions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks. Advances in Polymer Science, 2015, , 143-166.	0.8	17
24	Hyperbranched polymers containing oxazoline monomers and succinic anhydride: Applications in fast drying, low solvent coating formulations. Progress in Organic Coatings, 2014, 77, 1516-1522.	3.9	6
25	Multivalency in healable supramolecular polymers: the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polymer Chemistry, 2014, 5, 3680-3688.	3.9	75
26	Robust and Operationally Simple Synthesis of Poly(bis(2,2,2-trifluoroethoxy) phosphazene) with Controlled Molecular Weight, Low PDI, and High Conversion. ACS Macro Letters, 2014, 3, 548-551.	4.8	14
27	Evolution of supramolecular healable composites: a minireview. Polymer International, 2014, 63, 933-942.	3.1	19
28	Synthesis of novel hyperbranched polymers featuring oxazoline linear units and their application in fastâ€drying solventâ€borne coating formulations. Journal of Polymer Science Part A, 2013, 51, 3964-3974.	2.3	5
29	Lightly branched comb polyesters: Application in fast drying solvent-borne coating formulations. Reactive and Functional Polymers, 2013, 73, 619-623.	4.1	7
30	Mutual binding of polymer end-groups by complementary π–π-stacking: a molecular "Roman Handshake― Chemical Communications, 2013, 49, 454-456.	4.1	33
31	Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends – a route to property enhancement. Polymer Chemistry, 2013, 4, 4902.	3.9	55
32	Healable Polymeric Materials. RSC Polymer Chemistry Series, 2013, , 1-15.	0.2	2
33	Healable Supramolecular Polymeric Materials. RSC Polymer Chemistry Series, 2013, , 92-125.	0.2	3
34	Healable supramolecular polymers. Polymer Chemistry, 2013, 4, 4860.	3.9	138
35	Pairwise Assembly of Organopalladium(II) Units with Cyanurato(3â^') and Trithiocyanurato(3â^') Ligands: Formation of Chiral Pd12, Pd10, and Pd9 Cage-Molecules. Inorganic Chemistry, 2013, 52, 10424-10430.	4.0	8
36	Urea Organogelators – Synthesis and Properties. Macromolecular Symposia, 2013, 329, 118-124.	0.7	2

#	Article	IF	CITATIONS
37	Novel Polyvinylpyrrolidones To Improve Delivery of Poorly Water-Soluble Drugs: From Design to Synthesis and Evaluation. Molecular Pharmaceutics, 2012, 9, 2237-2247.	4.6	6
38	Electrospun supramolecular polymer fibres. European Polymer Journal, 2012, 48, 1249-1255.	5.4	21
39	Thermoresponsive Supramolecular Polymer Network Comprising Pyrene-Functionalized Gold Nanoparticles and a Chain-Folding Polydiimide. Macromolecules, 2012, 45, 5567-5574.	4.8	33
40	High-Strength, Healable, Supramolecular Polymer Nanocomposites. Journal of the American Chemical Society, 2012, 134, 5362-5368.	13.7	303
41	Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127. Journal of Colloid and Interface Science, 2012, 368, 336-341.	9.4	29
42	pH‶unable Hydrogelators for Water Purification: Structural Optimisation and Evaluation. Chemistry - A European Journal, 2012, 18, 2692-2699.	3.3	70
43	Tuning the Self-Assembly of the Bioactive Dipeptide <scp> < scp>-Carnosine by Incorporation of a Bulky Aromatic Substituent. Langmuir, 2011, 27, 2980-2988.</scp>	3 . 5	67
44	A Supramolecular Polymer Based on Tweezer-Type Ï€â^Ï€ Stacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chemistry of Materials, 2011, 23, 6-8.	6.7	222
45	Pyrene-Modified Quartz Crystal Microbalance for the Detection of Polynitroaromatic Compounds. Analytical Chemistry, 2011, 83, 6208-6214.	6.5	11
46	Crystallization and stereocomplexation behavior of poly(<scp>D</scp> ―and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1397-1409.	f 50 387 T 2.1	d (<scp>L</scp>
47	Synthesis of beaded poly(vinyl ether) solid supports with unique solvent compatibility. Polymer, 2010, 51, 2984-2992.	3.8	10
48	A Healable Supramolecular Polymer Blend Based on Aromatic Ï€â^'Ï€ Stacking and Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2010, 132, 12051-12058.	13.7	779
49	Hydrogen Bonded Supramolecular Elastomers: Correlating Hydrogen Bonding Strength with Morphology and Rheology. Macromolecules, 2010, 43, 2512-2517.	4.8	101
50	Healable polymeric materials: a tutorial review. Chemical Society Reviews, 2010, 39, 1973.	38.1	389
51	Pyreneâ€Functionalised, Alternating Copolyimide for Sensing Nitroaromatic Compounds. Macromolecular Rapid Communications, 2009, 30, 459-463.	3.9	58
52	A General Synthesis of Macrocyclic π-Electron-Acceptor Systems. Organic Letters, 2009, 11, 5238-5241.	4.6	21
53	A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chemical Communications, 2009, , 6717.	4.1	475
54	Facile bisurethane supramolecular polymers containing flexible alicyclic receptor units. Soft Matter, 2009, 5, 2000.	2.7	37

#	Article	IF	CITATIONS
55	A novel self-healing supramolecular polymer system. Faraday Discussions, 2009, 143, 251.	3.2	186
56	Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends. Tetrahedron, 2008, 64, 8346-8354.	1.9	77
57	Towards Cyclophosphazene Based Dendrimers For Energetic Binders. Materials Research Society Symposia Proceedings, 2005, 896, 51.	0.1	0